Homework 3

Due 10/18/2019

In the following problems, make sure to write your arguments coherently in full sentences. Avoid using ambiguous symbols such as \rightarrow, ?, ..., \therefore Instead, use words to transition your ideas, for example "This leads to", "Therefore", "We want to show", etc.

Let

$$
V=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: a, b, c, d \in \mathbb{R}, a+b+c=0\right\}
$$

W be the set of all functions of the form $\alpha x+\beta x^{2}+\gamma e^{x}$ where $\alpha, \beta, \gamma \in \mathbb{R}, \alpha+\beta+\gamma=0$.

1. Show that V is a vector space over \mathbb{R}.
2. Find a basis of V. Name it B_{1}. What is the dimension of V ?
3. Show that W is a vector space over \mathbb{R}.
4. Find a basis of W. Name it B_{2}. What is the dimension of W ?
5. Consider a function $f: V \rightarrow W$ given by

$$
f\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=a x+b x^{2}+c e^{x}
$$

Show that f is a linear map.
6. Find the matrix $[f]_{B_{2}, B_{1}}$.

Do the following problem for 6 bonus points.
7. Let V be the set of all continuous functions from the interval $[0,1$ to \mathbb{R}. Consider a map $F: V \rightarrow \mathbb{R}$ given by,

$$
F(u)=\int_{0}^{1} x^{2} u(x) d x \quad \forall u \in V .
$$

Is F linear? Verify your answer.

