Homework 4

Due 10/25/2019

In the following problems, make sure to write your arguments coherently in full sentences. If possible, start a sentence with words rather than a formula. Avoid using ambiguous symbols such as $\rightarrow, ?, \ldots, \therefore$ Instead, use words to transition your ideas, for example "This leads to", "Therefore", "We want to show", etc.

For Problem 1, 2, 3, let V be the set of all 3×2 matrices with real coefficients such that the sum of the entries on each row is equal to 0 .

1. Show that V is a vector space over \mathbb{R}.
2. Find a basis of V. Call it \mathcal{B}. What is $\operatorname{dim}_{\mathbb{R}} V$?
3. Find the coordinate vector (in basis \mathcal{B}) of the following matrix:

$$
A=\left[\begin{array}{cc}
2 & -2 \\
-3 & 3 \\
0 & 0
\end{array}\right]
$$

For Problem 4, 5, 6, 7, let $f: M_{2 \times 2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ be a function defined as

$$
f\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=a(x-1)^{2}+b x
$$

Here $P_{2}(\mathbb{R})$ denotes the vector space of all polynomials with real coefficients of degree ≤ 2.
4. Show that f is a linear map.
5. Find a matrix representation of f.
6. Find a basis of $\operatorname{null}(f)$. What is the nullity of f ?

Do the following problem for 6 bonus points.
7. Find a basis of range (f). What is the rank of f ?

