Homework 7

Due 11/25/2019

In the following problems, make sure to write your arguments coherently in full sentences. If possible, start a sentence with words rather than a formula. Avoid using ambiguous symbols such as ?, ..., \therefore . You can use the arrows to indicate row operations. In other circumstances, use words to transition your ideas, for example "This leads to", "Therefore", "We want to show", etc.

- 1. Let $T: V \to V$ be a linear map. Show that $\operatorname{null}(T)$ and $\operatorname{range}(T)$ are invariant subspaces under T.
- 2. Let $T: V \to V$ be a linear map. For each $n \ge 1$, denote by T^n the composition mapping $T \circ T \circ \ldots \circ T$ (*n* times). Show that $\operatorname{null}(T) \subset \operatorname{null}(T^2)$.
- 3. Let

$$A = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 6 & 2 & 0 & 0 \\ 6 & 2 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}.$$

Put

$$V_1 = \{ v : Av = (-1)v \}, V_2 = \{ v : Av = 0v \}, V_3 = \{ v : Av = 2v \}.$$

Show that $V_1 \oplus V_2 \oplus V_3 = \mathbb{R}^4$.

4. Consider a subspace of $P_3(\mathbb{R})$

$$V_1 = \left\{ u \in P_3(\mathbb{R}) : u(1) = u'(1) = 0 \right\}.$$

Find a subspace V_2 of P_3 such that $V_1 \oplus V_2 = P_3$. *Hint:* convert the problem in P_3 to a problem in \mathbb{R}^4 by using coordinates.

Do the following problem for 6 bonus points.

5. Consider two subspaces of \mathbb{C}^3 :

$$V_1 = \{(z_1, z_2, z_3) \in \mathbb{C}^3 : z_1(1+i) + 2z_2 = 0\}, V_2 = \{(z_1, z_2, z_3) \in \mathbb{C}^3 : z_2 + (2-i)z_3 = 0\}.$$

Find a basis of $V_1 + V_2$. Is it a direct sum?