Homework 2
 Answer Key

1. Let V be a vector space over a field $F=\mathbb{Q}, \mathbb{R}, \mathbb{C}$. Suppose $v_{1}, v_{2} \in V$ are linearly independent of each other. Show that vectors $v_{1}+2 v_{2}$ and $2 v_{1}+3 v_{2}$ are linearly independent.
Solution: Let $c_{1}, c_{2} \in \mathbb{R}$ and consider the equation

$$
c_{1}\left(v_{1}+2 v_{2}\right)+c_{2}\left(2 v_{1}+3 v_{2}\right)=\mathbf{0}
$$

To show these vectors are linearly independent, we must show that $c_{1}=0$ and $c_{2}=0$.

$$
\begin{gathered}
c_{1}\left(v_{1}+2 v_{2}\right)+c_{2}\left(2 v_{1}+3 v_{2}\right)=\mathbf{0} \\
\downarrow \\
c_{1} v_{1}+2 c_{1} v_{2}+2 c_{2} v_{1}+3 c_{2} v_{2}=\mathbf{0} \\
\downarrow \\
\left(c_{1}+2 c_{2}\right) v_{1}+\left(2 c_{1}+3 c_{2}\right) v_{2}=\mathbf{0}
\end{gathered}
$$

Now since v_{1} and v_{2} are linearly independent, we must have both the v_{1} and v_{2} coefficients from this last equation be equal to 0 :

$$
\begin{aligned}
c_{1}+2 c_{2} & =0 \\
2 c_{1}+3 c_{2} & =0
\end{aligned}
$$

Now solve the system of equations (there are many ways to do this). Subtract 2 times the first equation from the second equation to get

$$
-c_{2}=0 \quad \rightarrow \quad c_{2}=0 .
$$

Now that we know $c_{2}=0$, the first equation becomes

$$
c_{1}+0=0 \quad \rightarrow \quad c_{1}=0 .
$$

Therefore $v_{1}+2 v_{2}$ and $2 v_{1}+3 v_{2}$ are linearly independent.
2. Show that the functions $y_{1}=\sin (x), y_{2}=\cos (x)$ and $y_{3}=\sin (2 x)$ are linearly independent over \mathbb{R}.

Solution: Let $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ and set an arbitrary linear combination equal to $\mathbf{0}$:

$$
c_{1} \sin (x)+c_{2} \cos (x)+c_{3} \sin (2 x)=0 .
$$

This must hold for all $\boldsymbol{x} \in \mathbb{R}$. We want to show that $c_{1}=c_{2}=c_{3}=0$. To find these coefficients, we can plug in different values for x :

$$
\begin{array}{rlrll}
x=\frac{\pi}{2} & \rightarrow & c_{1}+0+0=0 & \rightarrow & c_{1}=0 \\
x=0 & \rightarrow & 0+c_{2}+0=0 & \rightarrow & c_{2}=0 \\
x=\frac{\pi}{4} & \rightarrow & \frac{\sqrt{2}}{2} c_{1}+\frac{\sqrt{2}}{2} c_{2}+c_{3}=0 & \rightarrow & c_{3}=0
\end{array}
$$

(notice that the last equation gives $c_{3}=0$, because we already knew that $c_{1}=c_{2}=0$ from the first two equations). Therefore $\sin (x), \cos (x)$, and $\sin (2 x)$ are linearly independent.
3. Consider the set

$$
V=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: a, b, c, d \in \mathbb{R}, a+d=0\right\}
$$

(a) Show that V is a vector space over \mathbb{R}.

Solution: Notice that V is a subset of the vector space $M_{2 \times 2}(\mathbb{R})$ of 2×2 real matrices. To show that V is a vector space, we only need to show that it is a subspace of $M_{2 \times 2}(\mathbb{R})$. There are three axioms to check:
A0-Closed under addition: Let $A, B \in V$ and write

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right] \\
B & =\left[\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right]
\end{aligned}
$$

Then

$$
A+B=\left[\begin{array}{ll}
a_{1}+a_{2} & b_{1}+b_{2} \\
c_{1}+c_{2} & d_{1}+d_{2}
\end{array}\right]
$$

and

$$
\begin{aligned}
a_{1}+a_{2}+d_{1}+d_{2} & =\left(a_{1}+d_{1}\right)+\left(a_{2}+d_{2}\right) \\
& =0+0 \\
& =0
\end{aligned} \quad \text { since } A, B \in V
$$

so $A+B \in V$.
S0 - Closed under scalar multiplication: Let

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in V
$$

and let $\beta \in \mathbb{R}$. Then

$$
\beta A=\left[\begin{array}{ll}
\beta a & \beta b \\
\beta c & \beta d
\end{array}\right]
$$

and

$$
\beta a+\beta d=\beta(a+d)=\beta(0)=0,
$$

so $\beta A \in V$.
A3 - V contains the zero vector: The zero vector is the matrix

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

with every coordinate equal to 0 . Then $a+d=0+0=0$, so the zero vector is in V.
(b) Find a basis for V.

Solution: A basis for V is a linearly independent subset that spans V. To ensure linear independence we want to find the smallest number of vectors we can that span V.
The condition $a+d=0$ gives $d=-a$, so any matrix in V can be written in the form

$$
\left[\begin{array}{cc}
a & b \\
c & -a
\end{array}\right]
$$

for some $a, b, c \in \mathbb{R}$. This can be rewritten as

$$
\begin{aligned}
{\left[\begin{array}{cc}
a & b \\
c & -a
\end{array}\right] } & =\left[\begin{array}{cc}
a & 0 \\
0 & -a
\end{array}\right]+\left[\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
c & 0
\end{array}\right] \\
& =a\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]+b\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+c\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

Which is a linear combination of three matrices. The set of these matrices

$$
\{A, B, C\}=\left\{\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\right\}
$$

will be our proposed basis. To prove this is a basis we need to show three things:
(i) $\{A, B, C\}$ is a subset of V : This is easy to check. For the matrix A, we have $a=1$ and $d=-1$, so $a+d=0$. For matrices B and $C, a=0$ and $d=0$, so again $a+d=0$.
(ii) $\{\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}\}$ spans \boldsymbol{V} (i.e., every element of V is a linear combination of A, B, and $C)$: We saw above that any element of V can be written as

$$
a A+b B+c C
$$

which is a linear combination of A, B, and C.
(iii) $\{A, B, C\}$ is linearly independent: Set an arbitrary linear combination equal to 0 :

$$
\begin{aligned}
a A+b B+c C & =\mathbf{0}_{2 \times 2} \\
& \downarrow \\
{\left[\begin{array}{cc}
a & b \\
c & -a
\end{array}\right] } & =\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

where $a, b, c \in \mathbb{R}$. Looking at each matrix coordinate separately, we find that $a=0$, $b=0$, and $c=0$. Therefore the set $\{A, B, C\}$ is linearly independent.
Thus all of the requirements for a basis are satisfied by $\{A, B, C\}$.
4. Are the functions $y_{1}=\sin (x), y_{2}=\cos (x)$, and $y_{3}=\sin (x+1)$ linearly independent over \mathbb{R} ? Verify your answer.
Solution: No. The functions are linearly dependent. To prove this, we need to find a nontrivial linear combination that is equal to zero. That is, we need to find numbers $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ (at least one of which is nonzero) such that

$$
c_{1} \sin (x)+c_{2} \cos (x)+c_{3} \sin (x+1)=0
$$

for all $x \in \mathbb{R}$. The trick is to remember the sum-of-angles trig. identity:

$$
\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta
$$

Applying this to $\sin (x+1)$, we get

$$
\sin (x+1)=\sin (x) \cos (1)+\cos (x) \sin (1) .
$$

Subtracting $\sin (x+1)$ from both sides gives

$$
0=\cos (1) \sin (x)+\sin (1) \cos (x)-\sin (x+1)
$$

Now $\cos (1)$ and $\sin (1)$ are just constants, so this is a nontrivial linear combination that is equal to zero $\left(c_{1}=\cos (1), c_{2}=\sin (1)\right.$, and $\left.c_{3}=-1\right)$. Therefore these functions are linearly dependent.

