Homework 3
 Answer Key

Let

$$
V=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: a, b, c, d \in \mathbb{R}, a+b+c=0\right\},
$$

and let W be the set of all functions of the form $\alpha x+\beta x^{2}+\gamma e^{x}$ where $\alpha, \beta, \gamma \in \mathbb{R}, \alpha+\beta+\gamma=0$.

1. Show that V is a vector space over \mathbb{R}.

Solution: We will show that V is a subspace of $M_{2 \times 2}(\mathbb{R})$. Check the 3 subspace axioms
(a) Closed under addition: Let $A, B \in V$ and write

$$
A=\left[\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right], \quad B=\left[\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right]
$$

Then

$$
A+B=\left[\begin{array}{ll}
a_{1}+a_{2} & b_{1}+b_{2} \\
c_{1}+c_{2} & d_{1}+d_{2}
\end{array}\right]
$$

and

$$
\begin{aligned}
\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right)+\left(c_{1}+c_{2}\right) & =\left(a_{1}+b_{1}+c_{1}\right)+\left(a_{2}+b_{2}+c_{2}\right) \\
& =0+0 \\
& =0,
\end{aligned}
$$

so $A+B \in V$.
(b) Closed under scalar multiplication: Let $A \in V$ and $\beta \in \mathbb{R}$ and write

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Then

$$
\beta A=\left[\begin{array}{ll}
\beta a & \beta b \\
\beta c & \beta d
\end{array}\right]
$$

and

$$
\begin{aligned}
(\beta a)+(\beta b)+(\beta c) & =\beta(a+b+c) \\
& =\beta(0) \\
& =0,
\end{aligned}
$$

so $\beta A \in V$.
(c) Contains the zero vector: $0+0+0=0$, so

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \in V .
$$

2. Find a basis for V. Name it B_{1}. What is the dimension of V ?

Solution: There are multiple correct solutions to this problem. Your choice of basis may be slightly different.
First rewrite V :

$$
\begin{align*}
V & =\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: a, b, c, d \in \mathbb{R}, a+b+c=0\right\} \\
& =\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: a, b, c, d \in \mathbb{R}, a=-b-c\right\} \\
& =\left\{\left[\begin{array}{cc}
-b-c & b \\
c & d
\end{array}\right]: b, c, d \in \mathbb{R}\right\} \tag{*}
\end{align*}
$$

We can find basis elements by choosing values for $b, c, d \in \mathbb{R}$.

- $b=1, c=d=0: \quad A_{1}=\left[\begin{array}{cc}-1 & 1 \\ 0 & 0\end{array}\right]$
- $c=1, b=d=0: \quad A_{2}=\left[\begin{array}{cc}-1 & 0 \\ 1 & 0\end{array}\right]$
- $d=1, b=c=0: \quad A_{3}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$

We claim that $B_{1}=\left\{A_{1}, A_{2}, A_{3}\right\}$ is a basis for V. There are three properties to show:
(i) $B_{1} \subset V$: Each matrix A_{i} was determined using form in the rewritten definition (*) for V. Therefore each A_{i} is an element of V.
(ii) $V=\operatorname{span}\left(B_{1}\right)$: Every element of V can be written as

$$
\begin{aligned}
{\left[\begin{array}{cc}
-b-c & b \\
c & d
\end{array}\right] } & =\left[\begin{array}{cc}
-b & b \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
-c & 0 \\
c & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & d
\end{array}\right] \\
& =b A_{1}+c A_{2}+d A_{3}
\end{aligned}
$$

for some $b, c, d \in \mathbb{R}$. That is, every element of V can be written as a linear combination of elements in B_{1}. Since $B_{1} \subset V$ we get $V=\operatorname{span}\left(B_{1}\right)$.
(iii) B_{1} is linearly independent: Let $b, c, d \in \mathbb{R}$ and set a linear combination equal to $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$:

$$
\begin{aligned}
b A_{1}+c A_{2}+d A_{3} & =\mathbf{0}_{2 \times 2} \\
& \downarrow \\
{\left[\begin{array}{cc}
-b-c & b \\
c & d
\end{array}\right] } & =\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
\end{aligned}
$$

From the matrix coordinates we find $b=c=d=0$, so B_{1} is linearly independent.
Since all three properties are satisfied, B_{1} is a basis for V. Since B_{1} has exactly 3 elements, the dimension of V is 3 .
3. Show that W is a vector space over \mathbb{R}.

Solution:

We will show that W is a subspace of $\mathbb{R}^{\mathbb{R}}$ (the space of all functions from \mathbb{R} to \mathbb{R}). Check the 3 subspace axioms
(a) Closed under addition: Let $g(x), h(x) \in W$ and write

$$
g(x)=\alpha_{1} x+\beta_{1} x^{2}+\gamma_{1} e^{x}, \quad h(x)=\alpha_{2} x+\beta_{2} x^{2}+\gamma_{2} e^{x},
$$

where $\alpha_{i}, \beta_{i}, \gamma_{i} \in \mathbb{R}$ for $i=1,2$. Then

$$
g(x)+h(x)=\left(\alpha_{1}+\alpha_{2}\right) x+\left(\beta_{1}+\beta_{2}\right) x^{2}+\left(\gamma_{1}+\gamma_{2}\right) e^{x}
$$

and

$$
\begin{aligned}
\left(\alpha_{1}+\alpha_{2}\right)+\left(\beta_{1}+\beta_{2}\right)+\left(\gamma_{1}+\gamma_{2}\right) & =\left(\alpha_{1}+\beta_{1}+\gamma_{1}\right)+\left(\alpha_{2}+\beta_{2}+\gamma_{2}\right) \\
& =0+0 \\
& =0,
\end{aligned}
$$

so $g(x)+h(x) \in W$.
(b) Closed under scalar multiplication: Let $g(x) \in W$ and $k \in \mathbb{R}$ and write

$$
g(x)=\alpha x+\beta x^{2}+\gamma e^{x}
$$

Then

$$
k g(x)=k \alpha x+k \beta x^{2}+k \gamma e^{x}
$$

and

$$
\begin{aligned}
k \alpha+k \beta+k \gamma & =k(\alpha+\beta+\gamma) \\
& =k(0) \\
& =0,
\end{aligned}
$$

so $k g(x) \in W$.
(c) W contains the zero vector: $0+0+0=0$, so

$$
\mathbf{0}=0(x)+0\left(x^{2}\right)+0\left(e^{x}\right) \in W .
$$

4. Find a basis for W. Name it B_{2}. What is the dimension of W ?

Solution: There are multiple correct solutions to this problem. Your choice of basis may be slightly different.
First rewrite W :

$$
\begin{align*}
W & =\left\{\alpha x+\beta x^{2}+\gamma e^{x}: \alpha, \beta, \gamma \in \mathbb{R}, \alpha+\beta+\gamma=0\right\} \\
& =\left\{\alpha x+\beta x^{2}+\gamma e^{x}: \alpha, \beta, \gamma \in \mathbb{R}, \gamma=-\alpha-\beta\right\} \\
& =\left\{\alpha x+\beta x^{2}+(-\alpha-\beta) e^{x}: \alpha, \beta, \gamma \in \mathbb{R}\right\} \tag{**}
\end{align*}
$$

We can find basis elements by choosing values for $\alpha, \beta \in \mathbb{R}$.

- $\alpha=1, \beta=0: \quad g_{1}(x)=x-e^{x}$
- $\alpha=0, \beta=1: \quad g_{2}(x)=x^{2}-e^{x}$

We claim that $B_{2}=\left\{g_{1}, g_{2}\right\}$ is a basis for W.
There are three properties to show:
(i) $B_{2} \subset W$: Each function g_{i} was determined using form in the rewritten definition $(* *)$ for W. Therefore each g_{i} is an element of W.
(ii) $W=\operatorname{span}\left(B_{2}\right)$: Every element of W can be written as

$$
\begin{aligned}
\alpha x+\beta x^{2}+(-\alpha-\beta) e^{x} & =\alpha\left(x-e^{x}\right)+\beta\left(x^{2}-e^{x}\right) \\
& =\alpha g_{1}(x)+\beta g_{2}(x)
\end{aligned}
$$

for some $\alpha, \beta \in \mathbb{R}$. That is, every element of W can be written as a linear combination of elements in B_{2}. Since $B_{2} \subset W$ we get $W=\operatorname{span}\left(B_{2}\right)$.
(iii) B_{2} is linearly independent: Let $\alpha, \beta \in \mathbb{R}$ and set a linear combination equal to 0 :

$$
\begin{aligned}
\alpha g_{1}(x)+\beta g_{2}(x) & =0 & & \text { for all } x \in \mathbb{R} \\
& \downarrow & & \\
\alpha x+\beta x^{2}+(-\alpha-\beta) e^{x} & =0 & & \text { for all } x \in \mathbb{R}
\end{aligned}
$$

Plug in $x=0$ to get

$$
(-\alpha-\beta)=0
$$

Now that we know $(-\alpha-\beta)=0$, the equation becomes

$$
\alpha x+\beta x^{2}=0 \quad \text { for all } x \in \mathbb{R} .
$$

Plug in $x=1$ and $x=-1$ to get

$$
\begin{array}{r}
\alpha+\beta=0 \\
-\alpha+\beta=0
\end{array}
$$

Adding these equations together gives $2 \beta=0$, so $\beta=0$. Then the first equation becomes

$$
\alpha+0=0 \quad \rightarrow \quad \alpha=0 .
$$

Thus $\alpha=\beta=0$, so B_{2} is linearly independent.
Since all three properties are satisfied, B_{2} is a basis for W. Since B_{2} has exactly 2 elements, the dimension of W is 2 .
5. Consider the function $f: V \rightarrow W$ given by

$$
f\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=a x+b x^{2}+c e^{x}
$$

Show that f is a linear map.
Solution: We must show that f preserves addition and scalar multiplication. That is, for $A, B \in V$ and $k \in \mathbb{R}$ we must show

- $f(A+B)=f(A)+f(B)$
- $f(k A)=k f(A)$
\boldsymbol{f} preserves addition: Let $A, B \in V$ and write

$$
A=\left[\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right], \quad B=\left[\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right] .
$$

Then

$$
\begin{aligned}
f(A+B) & =f\left(\left[\begin{array}{ll}
a_{1}+a_{2} & b_{1}+b_{2} \\
c_{1}+c_{2} & d_{1}+d_{2}
\end{array}\right]\right) \\
& =\left(a_{1}+a_{2}\right) x+\left(b_{1}+b_{2}\right) x^{2}+\left(c_{1}+c_{2}\right) e^{x}
\end{aligned}
$$

and

$$
\begin{aligned}
f(A)+f(B) & =f\left(\left[\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right]\right)+f\left(\left[\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right]\right) \\
& =\left(a_{1} x+b_{1} x^{2}+c_{1} e^{x}\right)+\left(a_{2} x+b_{2} x^{2}+c_{2} e^{x}\right) \\
& =\left(a_{1}+a_{2}\right) x+\left(b_{1}+b_{2}\right) x^{2}+\left(c_{1}+c_{2}\right) e^{x}
\end{aligned}
$$

so $f(A+B)=f(A)+f(B)$.
f preserves scalar multiplication: Let $k \in \mathbb{R}$ and $A \in V$ and write

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Then

$$
\begin{aligned}
f(k A) & =f\left(\left[\begin{array}{ll}
k a & k b \\
k c & k d
\end{array}\right]\right) \\
& =k a x+k b x^{2}+k c e^{x} \\
& =k\left(a x+b x^{2}+c e^{x}\right) \\
& =k f(A) .
\end{aligned}
$$

6. Find the matrix $[f]_{B_{2}, B_{1}}$.

Solution: Your solution depends on your choice of bases in problems 2 and 4. If you chose different bases than the ones I chose, then your answer will probably look different.
To find the matrix $[f]_{B_{2}, B_{1}}$ we must apply f to each element of B_{1} and rewrite the result in terms of B_{2}. Recall that I chose

- $B_{1}=\left\{A_{1}, A_{2}, A_{3}\right\}=\left\{\left[\begin{array}{cc}-1 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{cc}-1 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$
- $B_{2}=\left\{g_{1}, g_{2}\right\}=\left\{x-e^{x}, x^{2}-e^{x}\right\}$

To find the first column of $[f]_{B_{2}, B_{1}}$ apply f to A_{1} and write result in terms of B_{2}.

$$
\begin{aligned}
f\left(A_{1}\right) & =f\left(\left[\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right]\right) \\
& =-x+x^{2} \\
& =-\left(x-e^{x}\right)+\left(x^{2}-e^{x}\right) \\
& =(-1) g_{1}+(1) g_{2}
\end{aligned}
$$

The coefficients on g_{1} and g_{2} tell us that the first column of $[f]_{B_{2}, B_{1}}$ is

$$
\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Now apply this process to A_{2} and A_{3} :

$$
\begin{aligned}
f\left(A_{2}\right) & =-x+e^{x} \\
& =-\left(x-e^{x}\right) \\
& =(-1) g_{1}+(0) g_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
f\left(A_{3}\right) & =0 \\
& =(0) g_{1}+(0) g_{2}
\end{aligned}
$$

so the second and third columns of $[f]_{B_{2}, B_{1}}$ are

$$
\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

respectively. Therefore

$$
[f]_{B_{2}, B_{1}}=\left[\begin{array}{ccc}
-1 & -1 & 0 \\
1 & 0 & 0
\end{array}\right] .
$$

7. Let V be the set of all continuous functions from the interval $[0,1]$ to \mathbb{R}. Consider the map $F: V \rightarrow \mathbb{R}$ given by

$$
F(u)=\int_{0}^{1} x^{2} u(x) d x \quad \forall u \in V
$$

Is F linear? Verify your answer.
Solution: Yes, \boldsymbol{F} is linear. To prove this, we need to show that F preserves addition and scalar multiplication.
Recall the definitions of function addition and scalar multiplication:

$$
\begin{aligned}
(u+v)(x) & =u(x)+v(x) & & \text { for } u, v \in V \\
(\alpha u)(x) & =\alpha u(x) & & \text { for } u \in V \text { and } \alpha \in \mathbb{R}
\end{aligned}
$$

Now we check the properties of a linear function:
\boldsymbol{F} preserves addition: Let $u, v \in V$. Then

$$
\begin{aligned}
F(u+v) & =\int_{0}^{1} x^{2}(u+v)(x) d x \\
& =\int_{0}^{1} x^{2}(u(x)+v(x)) d x \\
& =\int_{0}^{1} x^{2} u(x)+x^{2} v(x) d x \\
& =\int_{0}^{1} x^{2} u(x) d x+\int_{0}^{1} x^{2} v(x) d x \quad \text { (by linearity of integration) } \\
& =F(u)+F(v)
\end{aligned}
$$

\boldsymbol{F} preserves scalar multiplication: Let $\alpha \in \mathbb{R}$ and $u \in V$. Then

$$
\begin{aligned}
F(\alpha u) & =\int_{0}^{1} x^{2}(\alpha u)(x) d x \\
& =\int_{0}^{1} x^{2}(\alpha u(x)) d x \\
& =\alpha \int_{0}^{1} x^{2} u(x) d x \\
& =\alpha F(u)
\end{aligned} \quad \text { (by linearity of integration) }
$$

