Homework 4
 Answer Key

For problems $1,2,3$, let V be the set of all 3×2 matrices with real coefficients such that the sum of the entries in each row is equal to 0 .

1. Show that V is a vector space over \mathbb{R}.

Solution: Since V is a subset of the vector space $M_{3 \times 2}(\mathbb{R})$, we only need to show that it is also a subspace of $M_{3 \times 2}(\mathbb{R})$.

- $\mathbf{0} \in V$: Notice that the sum of the coordinates in each row of

$$
\mathbf{0}_{3 \times 2}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

is $0+0=0$, so $\mathbf{0}_{3 \times 2} \in V$.

- Closed under addition: Let $A, B \in V$ and write

$$
A=\left[\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1} \\
e_{1} & f_{1}
\end{array}\right], \quad B=\left[\begin{array}{cc}
a_{2} & b_{2} \\
c_{2} & d_{2} \\
e_{2} & f_{2}
\end{array}\right]
$$

Then

$$
A+B=\left[\begin{array}{ll}
a_{1}+a_{2} & b_{1}+b_{2} \\
c_{1}+c_{2} & d_{1}+d_{2} \\
e_{1}+e_{2} & f_{1}+f_{2}
\end{array}\right]
$$

The sum of the coordinates in the first row of $A+B$ is

$$
a_{1}+a_{2}+b_{1}+b_{2}=\left(a_{1}+b_{1}\right)+\left(a_{2}+b_{2}\right)=0+0=0 .
$$

The sums in the other rows are also 0 by similar reasoning. Therefore $A+B \in V$

- Closed under scalar multiplication: Let $A \in V$ and $\lambda \in \mathbb{R}$ and write

$$
A=\left[\begin{array}{ll}
a & b \\
c & d \\
e & f
\end{array}\right]
$$

Then

$$
\lambda A=\left[\begin{array}{cc}
\lambda a & \lambda b \\
\lambda c & \lambda d \\
\lambda e & \lambda f
\end{array}\right]
$$

The sum of the coordinates in the first row of $A+B$ is

$$
\lambda a+\lambda b=\lambda(a+b)=\lambda(0)=0 .
$$

The sums in the other rows are also 0 by similar reasoning. Therefore $\lambda A \in V$
Thus V satisfies all of the subspace axioms, so V is a subspace of $M_{3 \times 2}(\mathbb{R})$ and hence a vector space.
2. Find a basis of V. Call it \mathcal{B}. What is $\operatorname{dim}_{\mathbb{R}} V$?

Solution: We can write the set V as

$$
\begin{aligned}
V & =\left\{\left[\begin{array}{ll}
a & b \\
c & d \\
e & f
\end{array}\right]: a, b, c, d, e, f \in \mathbb{R}, a+b=0, c+d=0, e+f=0\right\} \\
& =\left\{\left[\begin{array}{ll}
a & -a \\
c & -c \\
e & -e
\end{array}\right]: a, b, c \in \mathbb{R}\right\}
\end{aligned}
$$

Let

$$
\mathcal{B}=\left\{\left[\begin{array}{cc}
1 & -1 \\
0 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & 0 \\
1 & -1 \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
1 & -1
\end{array}\right]\right\}
$$

and notice that $\mathcal{B} \subset V$. Now every element of V can be written as a linear combination

$$
a\left[\begin{array}{cc}
1 & -1 \\
0 & 0 \\
0 & 0
\end{array}\right]+c\left[\begin{array}{cc}
0 & 0 \\
1 & -1 \\
0 & 0
\end{array}\right]+e\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
1 & -1
\end{array}\right], \quad a, c, e \in \mathbb{R}
$$

of elements of \mathcal{B}. It is easy to check that \mathcal{B} is linearly independent. Set a linear combination equal to 0 :

$$
\begin{aligned}
{\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right] } & =a\left[\begin{array}{cc}
1 & -1 \\
0 & 0 \\
0 & 0
\end{array}\right]+c\left[\begin{array}{cc}
0 & 0 \\
1 & -1 \\
0 & 0
\end{array}\right]+e\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
1 & -1
\end{array}\right], \quad a, c, e \in \mathbb{R} \\
& =\left[\begin{array}{ll}
a & -a \\
c & -c \\
e & -e
\end{array}\right] .
\end{aligned}
$$

The coordinates in the first column give $a=c=e=0$, so \mathcal{B} is linearly independent. The dimension of V is $\operatorname{dim}_{\mathbb{R}}(V)=|\mathcal{B}|=3$.
3. Find the coordinate vector (in basis \mathcal{B}) of the following matrix:

$$
A=\left[\begin{array}{cc}
2 & -2 \\
-3 & 3 \\
0 & 0
\end{array}\right]
$$

Solution: To find the \mathcal{B}-coordinate vector of A, we must first write A in terms of the elements of \mathcal{B} :

$$
\left[\begin{array}{cc}
2 & -2 \\
-3 & 3 \\
0 & 0
\end{array}\right]=(2)\left[\begin{array}{cc}
1 & -1 \\
0 & 0 \\
0 & 0
\end{array}\right]+(-3)\left[\begin{array}{cc}
0 & 0 \\
1 & -1 \\
0 & 0
\end{array}\right]+(0)\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
1 & -1
\end{array}\right]
$$

The coeffiecients $2,-3$, and 0 are the components of the coordinate vector:

$$
[A]_{\mathcal{B}}=\left[\begin{array}{c}
2 \\
-3 \\
0
\end{array}\right] .
$$

For problems $4,5,6,7$, let $f: M_{2 \times 2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ be a function defined as

$$
f\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=a(x-1)^{2}+b x
$$

Here $P_{2}(\mathbb{R})$ denotes the vector space of all polynomials with real coefficients of degree ≤ 2.
4. Show that f is a linear map.

Solution: we need to check
(a) $f(A+B)=f(A)+f(B)$,
(b) $f(\lambda A=\lambda f(A)$
for all $A, B \in M_{2 \times 2}(\mathbb{R})$ and all $\lambda \in \mathbb{R}$. Write

$$
A=\left[\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right]
$$

Then
(a)

$$
\begin{aligned}
F(A+B) & =F\left(\left[\begin{array}{ll}
a_{1}+a_{2} & b_{1}+b_{2} \\
c_{1}+c_{2} & d_{1}+d_{2}
\end{array}\right]\right) \\
& =\left(a_{1}+a_{2}\right)(x-1)^{2}+\left(b_{1}+b_{2}\right) x \\
& =a_{1}(x-1)^{2}+b_{1} x+a_{2}(x-1)^{2}+b_{2} x \\
& =F(A)+F(B)
\end{aligned}
$$

(b)

$$
\begin{aligned}
F(\lambda A) & =F\left(\left[\begin{array}{cc}
\lambda a_{1} & \lambda b_{1} \\
\lambda c_{1} & \lambda d_{1}
\end{array}\right]\right) \\
& =\left(\lambda a_{1}\right)(x-1)^{2}+\left(\lambda b_{1}\right) x \\
& =\lambda\left(a_{1}(x-1)^{2}+b_{1} x\right) \\
& =\lambda F(A)
\end{aligned}
$$

5. Find a matrix representation of f.

Solution: To do this, we first need to choose bases for $M_{2 \times 2}(\mathbb{R})$ and $P_{2}(\mathbb{R})$. The standard bases are

$$
\begin{array}{ll}
\mathcal{B}_{1}=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}=\left\{E_{1}, E_{2}, E_{3}, E_{4}\right\} & \text { for } M_{2 \times 2}(\mathbb{R}) \\
\mathcal{B}_{2}=\left\{1, x, x^{2}\right\} & \text { for } P_{2}(\mathbb{R}) .
\end{array}
$$

Now the columns of the matrix are the \mathcal{B}_{2}-coordinate vectors of $f\left(E_{i}\right)$ for $i=1,2,3,4$. To find these coordinate vectors, we must write $f\left(E_{i}\right)$ in terms of \mathcal{B}_{2} :

$$
\left.\left.\begin{array}{rlrl}
f\left(E_{1}\right) & =f\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\right) & & \\
& =(1)(x-1)^{2} & & \\
& =1-2 x+x^{2} & & \\
f\left(E_{2}\right) & =(1)(x) & & \\
& \rightarrow & {\left[f\left(E_{1}\right)\right]_{\mathcal{B}_{2}}=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]} \\
f\left(E_{3}\right) & =0 & & \\
& & \\
\mathcal{B}_{2} & =\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \\
f\left(E_{4}\right) & =0 & & \rightarrow
\end{array} E_{3}\right)\right]_{\mathcal{B}_{2}}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

Therefore the matrix representation of f is

$$
[f]_{\mathcal{B}_{2}, \mathcal{B}_{1}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] .
$$

6. Find a basis of $\operatorname{null}(f)$. What is the nullity of f ?

Solution: The null space of f is the set of all elements $A \in M_{2 \times 2}(\mathbb{R})$ such that $F(A)=0$. Let

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

be an arbitrary element in $M_{2 \times 2}(\mathbb{R})$. Then

$$
\begin{aligned}
f(A) & =a(x-1)^{2}+b x \\
& =a+(-2 a+b) x+a x^{2} .
\end{aligned}
$$

Now $f(A)=a+(-2 a+b) x+a x^{2}$ is zero for all $x \in \mathbb{R}$ if and only if each coefficient is 0 :

$$
\begin{aligned}
a & =0 \\
-2 a+b & =0 \\
a & =0
\end{aligned}
$$

Since $a=0$ by the first equation, we must have $b=0$ from the second equation. Therefore $f(A)=0$ if and only if $a=b=0$. We can write the null space as

$$
\operatorname{null}(f)=\left\{\left[\begin{array}{ll}
0 & 0 \\
c & d
\end{array}\right]: c, d \in \mathbb{R}\right\} .
$$

It is easy to check that

$$
\mathcal{B}=\left\{\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

is a basis for $\operatorname{null}(f)$. The nullity of f is

$$
\operatorname{dim}(\operatorname{null}(f))=|\mathcal{B}|=2
$$

7. Find a basis of range (f). What is the rank of f ?

Soltuion: We can determine the rank of f using the rank-nullity theorem:

$$
\begin{aligned}
& \operatorname{rank}(f)+\operatorname{nullity}(f)=\operatorname{dim}\left(M_{2 \times 2}(\mathbb{R})\right) \\
& \downarrow \\
& \operatorname{rank}(f)+2=4 \\
& \downarrow \\
& \operatorname{rank}(f)=2
\end{aligned}
$$

The range of f is

$$
\begin{aligned}
\operatorname{range}(f) & =\left\{f(A): A \in M_{2 \times 2}(\mathbb{R})\right\} \\
& =\left\{a(x-1)^{2}+b: a, b \in \mathbb{R}\right\}
\end{aligned}
$$

It is easy to see from this that the set $\mathcal{B}=\left\{(x-1)^{2}, x\right\}$ spans range (f). Now range (f) is a 2 -dimensional space $($ since $\operatorname{dim}(\operatorname{range}(f))=\operatorname{rank}(f)=2)$ and \mathcal{B} is a set of exactly 2 elements that spans range (f), so \mathcal{B} must be a basis for range (f).

