Homework 7
 Answer Key

1. Let $T: V \rightarrow V$ be a linear map. Show that null (T) and range (T) are invariant subspaces under T.

Solution:

Let v be an arbitrary element of $\operatorname{null}(T)$. Then $T(u)=0$ and $0 \in \operatorname{null}(T)$, since $T(0)=0$. Therefore $T(u) \in \operatorname{null}(T)$ so $\operatorname{null}(T)$ is an invariant subspace under T.
Naturally for any element $u \in V$, the element $T(u)$ is contained in range (T). Now let v be an arbitrary element of $\operatorname{range}(T) \subset V$. Therefore $T(v) \in \operatorname{range}(T)$, so range (T) is an invariant subspace under T.
2. Let $T: V \rightarrow V$ be a linear map. For each $n \geq 1$, denote by T^{n} the composition mmapping $T \circ T \circ \cdots \circ T$ (n times). Show that $\operatorname{null}(T) \subset \operatorname{null}\left(T^{2}\right)$.
Solution: Let $v \in \operatorname{null}(T)$. Then

$$
T^{2}(v)=T(T(v))=T(0)=0
$$

so $v \in \operatorname{null}\left(T^{2}\right)$. Therefore $\operatorname{null}(T) \subset \operatorname{null}\left(T^{2}\right)$.
3. Let

$$
A=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
6 & 2 & 0 & 0 \\
6 & 2 & 0 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

Put

$$
\begin{aligned}
& V_{1}=\{v: A v=(-1) v\} \\
& V_{2}=\{v: A v=0 v\} \\
& V_{3}=\{v: A v=2 v\}
\end{aligned}
$$

Show that $V_{1} \oplus V_{2} \oplus V_{3}=\mathbb{R}^{4}$.
Solution: This is the problem of finding eigenvectors. First conisder V_{1}. The elements of V_{1} are the vectors $v \in \mathbb{R}^{4}$ that satisfy the equation

$$
(A-(-1) I) v=0 \quad \rightarrow \quad(A+I) v=0
$$

where I is the 4×4 identity matrix. This becomes

$$
\left.\begin{array}{r}
\left(\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
6 & 2 & 0 & 0 \\
6 & 2 & 0 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]+\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)
\end{array} \begin{array}{l}
\left.\downarrow \begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Write this equation in augmented form and row-reduce:

$$
\begin{aligned}
& {\left[\begin{array}{llll|l}
0 & 0 & 0 & 0 & 0 \\
6 & 3 & 0 & 0 & 0 \\
6 & 2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{\text { swap } R_{1} \text { and } R_{3}}\left[\begin{array}{llll|l}
6 & 2 & 1 & 0 & 0 \\
6 & 3 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] } \\
& \xrightarrow{R_{2}-R_{1} \rightarrow R_{2}}\left[\begin{array}{cccc|c}
6 & 2 & 1 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \xrightarrow{R_{1}-2 R_{2} \rightarrow R_{1}}\left[\begin{array}{cccc|c}
6 & 0 & 3 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \xrightarrow{\frac{1}{3} R_{1} \rightarrow R_{1}}\left[\begin{array}{cccc|c}
2 & 0 & 1 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

This augmented system gives the equations

$$
\begin{aligned}
2 v_{1}+v_{3} & =0 \\
v_{2}-v_{3} & =0
\end{aligned}
$$

We can then write $v_{2}=v_{3}=-2 v_{1}$, so the elements of V_{1} look like

$$
v=\left[\begin{array}{c}
v_{1} \\
-2 v_{1} \\
-2 v_{1} \\
v_{4}
\end{array}\right]=v_{1}\left[\begin{array}{c}
1 \\
-2 \\
-2 \\
0
\end{array}\right]+v_{4}\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

where $v_{1}, v_{4} \in \mathbb{R}$. Therefore

$$
B_{1}=\{(1,-2,-2,0),(0,0,0,1)\}
$$

is a basis for V_{1}.
The process is similar for V_{2} and V_{3}. I will omit some of the details. $v \in V_{2}$ satisfies $(A-0 I) v=0$. That is, $A v=0$.

$$
\left[\begin{array}{cccc|c}
-1 & 0 & 0 & 0 & 0 \\
6 & 2 & 0 & 0 & 0 \\
6 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0
\end{array}\right] \xrightarrow{\text { row-reduce }}\left[\begin{array}{cccc|c}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

so $v \in V_{2}$ looks like

$$
v=\left[\begin{array}{c}
0 \\
0 \\
v_{3} \\
0
\end{array}\right]=v_{3}\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]
$$

and a basis for V_{2} is

$$
B_{2}=\{(0,0,1,0)\} .
$$

$v \in V_{3}$ satisfies $(A-2 I) v=0$.

$$
\left[\begin{array}{cccc|c}
-3 & 0 & 0 & 0 & 0 \\
6 & 0 & 0 & 0 & 0 \\
6 & 2 & -2 & 0 & 0 \\
0 & 0 & 0 & -3 & 0
\end{array}\right] \xrightarrow{\text { row-reduce }}\left[\begin{array}{cccc|c}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

so $v \in V_{3}$ looks like

$$
v=\left[\begin{array}{c}
0 \\
v_{2} \\
v_{2} \\
0
\end{array}\right]=v_{2}\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right]
$$

and a basis for V_{3} is

$$
B_{3}=\{(0,1,1,0)\} .
$$

Now conisder the set

$$
B=B_{1} \cup B_{2} \cup B_{3}=\{(1,-2,-2,0),(0,0,0,1),(0,0,1,0),(0,1,1,0)\}
$$

Let the elements of B be the rows of a matrix:

$$
\left[\begin{array}{cccc}
1 & -2 & -2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

row reduction gives the identity matrix, so the rows are linearly independen. Therefore B is linearly independent, so it is a basis for $V_{1}+V_{2}+V_{3}$. Then

$$
\operatorname{dim}\left(V_{1}+V_{2}+V_{3}\right)=4=2+1+1=\operatorname{dim}\left(V_{1}\right)+\operatorname{dim}\left(V_{2}\right)+\operatorname{dim}\left(V_{3}\right)
$$

so the sum is a direct sum. Since $\operatorname{dim}\left(V_{1} \oplus V_{2} \oplus V_{3}\right)=4$, we must have that $V_{1} \oplus V_{2} \oplus V_{3}=\mathbb{R}^{4}$.
4. Consider a subspace of $P_{3}(\mathbb{R})$

$$
\left.V_{1}=\left\{u \in P_{2}(\mathbb{R}): u(1)=u^{\prime}(1)=0\right)\right\} .
$$

Find a subspace V_{2} of P_{3} such that $V_{1} \oplus V_{3}=P_{3}$.
Solution: Write a polynomial u as

$$
u(x)=a+b x+c x^{2}+d x^{3} .
$$

The condition $u(1)=u^{\prime}(1)=0$ gives

$$
a+b+c+d=0 \quad \text { and } \quad b+2 c+3 d=0 .
$$

Write this system in augmented form and row-reduce:

$$
\left[\begin{array}{llll|l}
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 2 & 3 & 0
\end{array}\right] \xrightarrow{R_{1}-R_{2} \rightarrow R_{1}}\left[\begin{array}{cccc|c}
1 & 0 & -1 & -2 & 0 \\
0 & 1 & 2 & 3 & 0
\end{array}\right]
$$

This gives the equations

$$
a=c+2 d \quad \text { and } \quad b=-2 c-3 d .
$$

It is helpful to use the basis $\left\{1, x, x^{2}, x^{3}\right\}$ for P_{3} to rewrite u as

$$
(a, b, c, d) .
$$

Then

$$
\begin{aligned}
V_{1} & =\left\{(a, b, c, d) \in \mathbb{R}^{4}: a=c+2 d, b=-2 c-3 d\right\} \\
& =\left\{(c+2 d,-2 c-3 d, c, d): d, a_{4} \in, \mathbb{R}\right\} \\
& =\{c(1,-2,1,0)+d(2,-3,0,1): c, d \in \mathbb{R}\}
\end{aligned}
$$

so

$$
B_{1}=\{(1,-2,1,0),(2,-3,0,1)\}
$$

is a basis for V_{1}. Let the elements of B be the rows of a matrix and row-reduce:

$$
\left[\begin{array}{llll}
1 & -2 & 1 & 0 \\
2 & -3 & 0 & 1
\end{array}\right] \xrightarrow{\text { row-reduce }}\left[\begin{array}{llll}
1 & 0 & -3 & 2 \\
0 & 1 & -2 & 1
\end{array}\right]
$$

The rows of the row-reduced matrix

$$
B_{1}=\{(1,0,-3,2),(0,1,-2,1)\}
$$

are also a basis for V_{1}. To find a basis for V_{2}, find the non-pivot columns of the row-reduced matrix. These are columns 3 and 4 , so let

$$
B_{2}=\left\{e_{3}, e_{4}\right\}=\{(0,0,1,0),(0,0,0,1)\}
$$

be a basis for V_{2}. Rewriting as polynomials, the basis for V_{2} is $\left\{x^{2}, x^{3}\right\}$.

Let $B=B_{1} \cup B_{2}$. Writing the elements of B as rows of a matrix gives

$$
\left[\begin{array}{cccc}
1 & 0 & -3 & 2 \\
0 & 1 & -2 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

Row-reduction gives the identity matrix, so the rows are linearly independent. Therefore

$$
\operatorname{dim}\left(V_{1}+V_{2}\right)=4=2+2=\operatorname{dim}\left(V_{1}\right)+\operatorname{dim}\left(V_{2}\right)
$$

so the sum is a direct sum. Since $\operatorname{dim}\left(V_{1} \oplus V_{2}\right)=4=\operatorname{dim}\left(P_{3}\right)$ we must have that $V_{1} \oplus V_{2}=P_{3}$.
5. Consider two subspaces of \mathbb{C}^{3} :

$$
\begin{aligned}
& V_{1}=\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{3}: z_{1}(1+i)+2 z_{2}=0\right\} \\
& V_{2}=\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{3}: z_{2}+(2-i) z_{3}=0\right\} .
\end{aligned}
$$

Find a basis of $V_{1}+V_{2}$. Is it a direct sum?
Solution: First find bases for V_{1} and V_{2} :

$$
\begin{aligned}
V_{1} & =\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{3}: z_{1}(1+i)+2 z_{2}=0\right\} \\
& =\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{3}: z_{2}=-\frac{1+i}{2} z_{1}\right\} \\
& =\left\{\left(z_{1},-\frac{1+i}{2} z_{1}, z_{3}\right): z_{1}, z_{3} \in \mathbb{C}\right\} \\
& =\left\{z_{1}\left(1,-\frac{1+i}{2}, 0\right)+z_{3}(0,0,1): z_{1}, z_{3} \in \mathbb{C}\right\}
\end{aligned}
$$

so

$$
B_{1}=\left\{\left(1,-\frac{1+i}{2}, 0\right),(0,0,1)\right\}
$$

is a basis for V_{1}.

$$
\begin{aligned}
V_{2} & =\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{3}: z_{2}+(2-i) z_{3}=0\right\} \\
& =\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{3}: z_{2}=(-2+i) z_{3}\right\} \\
& =\left\{\left(z_{1},(-2+i) z_{3}, z_{3}\right): z_{1}, z_{3} \in \mathbb{C}\right\} \\
& =\left\{z_{1}(1,0,0)+z_{3}(0,-2+i, 1): z_{1}, z_{3} \in \mathbb{C}\right\}
\end{aligned}
$$

so

$$
B_{2}=\{(1,0,0),(0,-2+i, 1)\}
$$

is a basis for V_{2}.

Now let $S=B_{1} \cup B_{2}$, so the elements of S span $V_{1}+V_{2}$. Write the elements of S as the rows of a matrix and row-reduce:

$$
\begin{aligned}
{\left[\begin{array}{ccc}
1 & -\frac{1+i}{2} & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & -2+i & 1
\end{array}\right] } & \xrightarrow{\text { reorder rows }}\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & -\frac{1+i}{2} & 0 \\
0 & 0 & 1 \\
0 & -2+i & 1
\end{array}\right] \\
& \xrightarrow{R_{2}-R_{1} \rightarrow R_{2}}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -\frac{1+i}{2} & 0 \\
0 & 0 & 1 \\
0 & -2+i & 1
\end{array}\right] \\
& \xrightarrow{-(1-i) R_{2} \rightarrow R_{2}}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -2+i & 1
\end{array}\right] \\
& \xrightarrow{R_{4}+(2-i) R_{2} \rightarrow R_{4}}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right] \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] }
\end{aligned}
$$

The rows of the reduced matrix also span $V_{1}+V_{2}$. Therefore

$$
B=\{(1,0,0),(0,1,0),(0,0,1)\}
$$

is a linearly independent set spanning $V_{1}+V_{2}$, so B is a basis for $V_{1}+V_{2}$.
Notice that $\operatorname{dim}\left(V_{1}\right)=\operatorname{dim}\left(V_{2}\right)=2$, but $V_{1}+V_{2}=\mathbb{C}^{3}$ so $\operatorname{dim}\left(V_{1}+V_{2}\right)=3$. Therefore

$$
\operatorname{dim}\left(V_{1}+V_{2}\right) \neq \operatorname{dim}\left(V_{1}\right)+\operatorname{dim}\left(V_{2}\right),
$$

so $V_{1}+V_{2}$ is not a direct sum of V_{1} and V_{2}.

