Homework 7 Answer Key

1. Let $T: V \to V$ be a linear map. Show that $\operatorname{null}(T)$ and $\operatorname{range}(T)$ are invariant subspaces under T.

Solution:

Let v be an arbitrary element of null(T). Then T(u) = 0 and $0 \in \text{null}(T)$, since T(0) = 0. Therefore $T(u) \in \text{null}(T)$ so null(T) is an invariant subspace under T.

Naturally for any element $u \in V$, the element T(u) is contained in range(T). Now let v be an arbitrary element of range $(T) \subset V$. Therefore $T(v) \in \text{range}(T)$, so range(T) is an invariant subspace under T.

2. Let $T: V \to V$ be a linear map. For each $n \ge 1$, denote by T^n the composition mmapping $T \circ T \circ \cdots \circ T$ (*n* times). Show that $\operatorname{null}(T) \subset \operatorname{null}(T^2)$.

Solution: Let $v \in \operatorname{null}(T)$. Then

$$T^{2}(v) = T(T(v)) = T(0) = 0$$

so $v \in \operatorname{null}(T^2)$. Therefore $\operatorname{null}(T) \subset \operatorname{null}(T^2)$.

3. Let

A =	$\left[-1\right]$	0	0	$\begin{bmatrix} 0\\0\\0\\-1\end{bmatrix}$
	6	2	0	0
	6	2	0	0
	0	0	0	-1
	0	0	0	-1_{-1}

Put

$$V_{1} = \{v : Av = (-1)v\}$$
$$V_{2} = \{v : Av = 0v\}$$
$$V_{3} = \{v : Av = 2v\}$$

Show that $V_1 \oplus V_2 \oplus V_3 = \mathbb{R}^4$.

Solution: This is the problem of finding eigenvectors. First consider V_1 . The elements of V_1 are the vectors $v \in \mathbb{R}^4$ that satisfy the equation

$$(A - (-1)I)v = 0 \qquad \rightarrow \qquad (A + I)v = 0$$

where I is the 4×4 identity matrix. This becomes

$$\begin{pmatrix} \begin{bmatrix} -1 & 0 & 0 & 0 \\ 6 & 2 & 0 & 0 \\ 6 & 2 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Write this equation in augmented form and row-reduce:

This augmented system gives the equations

$$2v_1 + v_3 = 0$$

 $v_2 - v_3 = 0$

We can then write $v_2 = v_3 = -2v_1$, so the elements of V_1 look like

$$v = \begin{bmatrix} v_1 \\ -2v_1 \\ -2v_1 \\ v_4 \end{bmatrix} = v_1 \begin{bmatrix} 1 \\ -2 \\ -2 \\ 0 \end{bmatrix} + v_4 \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

where $v_1, v_4 \in \mathbb{R}$. Therefore

$$B_1 = \{(1, -2, -2, 0), (0, 0, 0, 1)\}$$

is a basis for V_1 .

The process is similar for V_2 and V_3 . I will omit some of the details. $v \in V_2$ satisfies (A - 0I)v = 0. That is, Av = 0.

$$\begin{bmatrix} -1 & 0 & 0 & 0 & 0 \\ 6 & 2 & 0 & 0 & 0 \\ 6 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \end{bmatrix} \xrightarrow{\text{row-reduce}} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

so $v \in V_2$ looks like

$$v = \begin{bmatrix} 0\\0\\v_3\\0 \end{bmatrix} = v_3 \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}$$

and a basis for \mathcal{V}_2 is

$$B_2 = \{(0, 0, 1, 0)\}.$$

 $v \in V_3$ satisfies (A - 2I)v = 0.

$$\begin{bmatrix} -3 & 0 & 0 & 0 & 0 \\ 6 & 0 & 0 & 0 & 0 \\ 6 & 2 & -2 & 0 & 0 \\ 0 & 0 & 0 & -3 & 0 \end{bmatrix} \xrightarrow{\text{row-reduce}} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

so $v \in V_3$ looks like

$$v = \begin{bmatrix} 0\\v_2\\v_2\\0 \end{bmatrix} = v_2 \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix}$$

and a basis for V_3 is

$$B_3 = \{(0, 1, 1, 0)\}.$$

Now conisder the set

$$B = B_1 \cup B_2 \cup B_3 = \{(1, -2, -2, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 1, 0)\}$$

Let the elements of B be the rows of a matrix:

1	-2	-2	0
0	0	0	$\begin{array}{c} 1\\ 0 \end{array}$
0	0	1	0
0	1	1	0

row reduction gives the identity matrix, so the rows are linearly independen. Therefore B is linearly independent, so it is a basis for $V_1 + V_2 + V_3$. Then

$$\dim(V_1 + V_2 + V_3) = 4 = 2 + 1 + 1 = \dim(V_1) + \dim(V_2) + \dim(V_3)$$

so the sum is a direct sum. Since $\dim(V_1 \oplus V_2 \oplus V_3) = 4$, we must have that $V_1 \oplus V_2 \oplus V_3 = \mathbb{R}^4$.

4. Consider a subspace of $P_3(\mathbb{R})$

$$V_1 = \{ u \in P_2(\mathbb{R}) : u(1) = u'(1) = 0 \}$$

Find a subspace V_2 of P_3 such that $V_1 \oplus V_3 = P_3$. Solution: Write a polynomial u as

$$u(x) = a + bx + cx^2 + dx^3.$$

The condition u(1) = u'(1) = 0 gives

$$a + b + c + d = 0$$
 and $b + 2c + 3d = 0$.

Write this system in augmented form and row-reduce:

$$\begin{bmatrix} 1 & 1 & 1 & 1 & | & 0 \\ 0 & 1 & 2 & 3 & | & 0 \end{bmatrix} \xrightarrow{R_1 - R_2 \to R_1} \begin{bmatrix} 1 & 0 & -1 & -2 & | & 0 \\ 0 & 1 & 2 & 3 & | & 0 \end{bmatrix}$$

This gives the equations

$$a = c + 2d$$
 and $b = -2c - 3d$.

It is helpful to use the basis $\{1, x, x^2, x^3\}$ for P_3 to rewrite u as

(a, b, c, d).

Then

$$V_1 = \{(a, b, c, d) \in \mathbb{R}^4 : a = c + 2d, \ b = -2c - 3d\}$$
$$= \{(c + 2d, -2c - 3d, c, d) : d, a_4 \in \mathbb{R}\}$$
$$= \{c(1, -2, 1, 0) + d(2, -3, 0, 1) : c, d \in \mathbb{R}\}$$

 \mathbf{SO}

$$B_1 = \{(1, -2, 1, 0), (2, -3, 0, 1)\}$$

is a basis for V_1 . Let the elements of B be the rows of a matrix and row-reduce:

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 2 & -3 & 0 & 1 \end{bmatrix} \xrightarrow{\text{row-reduce}} \begin{bmatrix} 1 & 0 & -3 & 2 \\ 0 & 1 & -2 & 1 \end{bmatrix}$$

The rows of the row-reduced matrix

$$B_1 = \{(1, 0, -3, 2), (0, 1, -2, 1)\}$$

are also a basis for V_1 . To find a basis for V_2 , find the non-pivot columns of the row-reduced matrix. These are columns 3 and 4, so let

$$B_2 = \{e_3, e_4\} = \{(0, 0, 1, 0), (0, 0, 0, 1)\}$$

be a basis for V_2 . Rewriting as polynomials, the basis for V_2 is $\{x^2, x^3\}$.

Let $B = B_1 \cup B_2$. Writing the elements of B as rows of a matrix gives

$$\begin{bmatrix} 1 & 0 & -3 & 2 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Row-reduction gives the identity matrix, so the rows are linearly independent. Therefore

$$\dim(V_1 + V_2) = 4 = 2 + 2 = \dim(V_1) + \dim(V_2)$$

so the sum is a direct sum. Since $\dim(V_1 \oplus V_2) = 4 = \dim(P_3)$ we must have that $V_1 \oplus V_2 = P_3$.

5. Consider two subspaces of \mathbb{C}^3 :

$$V_1 = \{(z_1, z_2, z_3) \in \mathbb{C}^3 : z_1(1+i) + 2z_2 = 0\}$$

$$V_2 = \{(z_1, z_2, z_3) \in \mathbb{C}^3 : z_2 + (2-i)z_3 = 0\}.$$

Find a basis of $V_1 + V_2$. Is it a direct sum? Solution: First find bases for V_1 and V_2 :

$$V_{1} = \{(z_{1}, z_{2}, z_{3}) \in \mathbb{C}^{3} : z_{1}(1+i) + 2z_{2} = 0\}$$

= $\{(z_{1}, z_{2}, z_{3}) \in \mathbb{C}^{3} : z_{2} = -\frac{1+i}{2}z_{1}\}$
= $\{(z_{1}, -\frac{1+i}{2}z_{1}, z_{3}) : z_{1}, z_{3} \in \mathbb{C}\}$
= $\{z_{1}(1, -\frac{1+i}{2}, 0) + z_{3}(0, 0, 1) : z_{1}, z_{3} \in \mathbb{C}\}$

 \mathbf{SO}

$$B_1 = \{(1, -\frac{1+i}{2}, 0), (0, 0, 1)\}$$

is a basis for V_1 .

$$V_{2} = \{(z_{1}, z_{2}, z_{3}) \in \mathbb{C}^{3} : z_{2} + (2 - i)z_{3} = 0\}$$

= $\{(z_{1}, z_{2}, z_{3}) \in \mathbb{C}^{3} : z_{2} = (-2 + i)z_{3}\}$
= $\{(z_{1}, (-2 + i)z_{3}, z_{3}) : z_{1}, z_{3} \in \mathbb{C}\}$
= $\{z_{1}(1, 0, 0) + z_{3}(0, -2 + i, 1) : z_{1}, z_{3} \in \mathbb{C}\}$

 \mathbf{SO}

$$B_2 = \{(1,0,0), (0,-2+i,1)\}$$

is a basis for V_2 .

Now let $S = B_1 \cup B_2$, so the elements of S span $V_1 + V_2$. Write the elements of S as the rows of a matrix and row-reduce:

The rows of the reduced matrix also span $V_1 + V_2$. Therefore

$$B = \{(1,0,0), (0,1,0), (0,0,1)\}$$

is a linearly independent set spanning $V_1 + V_2$, so B is a basis for $V_1 + V_2$. Notice that $\dim(V_1) = \dim(V_2) = 2$, but $V_1 + V_2 = \mathbb{C}^3$ so $\dim(V_1 + V_2) = 3$. Therefore

 $\dim(V_1+V_2) \neq \dim(V_1) + \dim(V_2),$

so $V_1 + V_2$ is not a direct sum of V_1 and V_2 .