Homework 8 Answer Key

1. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear map given by $f(v)=A v$ where

$$
A=\left[\begin{array}{ccc}
3 & -2 & -2 \\
-1 & 4 & 2 \\
2 & -4 & -2
\end{array}\right]
$$

Is f diagonalizable? If it is, express $V=\mathbb{R}^{3}$ as a direct sum of one-dimensional invariant subspaces under f; then find a basis of V in which f is represented by a diagonal matrix.
Solution: First find the characteristic polynomial of A :

$$
\begin{aligned}
\operatorname{det}(A-\lambda I)= & \left|\begin{array}{ccc}
3-\lambda & -2 & -2 \\
-1 & 4-\lambda & 2 \\
2 & -4 & -2-\lambda
\end{array}\right| \\
= & (3-\lambda)\left|\begin{array}{cc}
4-\lambda & 2 \\
-4 & -2-\lambda
\end{array}\right|-(-1)\left|\begin{array}{cc}
-2 & -2 \\
-4 & -2-\lambda
\end{array}\right|+(2)\left|\begin{array}{cc}
-2 & -2 \\
4-\lambda & 2
\end{array}\right| \\
= & (3-\lambda)[(4-\lambda)(-2-\lambda)-(2)(-4)] \\
& \quad+[(-2)(-2-\lambda)-(-2)(-4)] \\
& \quad+(2)[(-2)(2)-(-2)(4-\lambda)] \\
= & (3-\lambda)\left(\lambda^{2}-2 \lambda\right)+(2 \lambda-4)+(2)(-2 \lambda+4) \\
= & (3-\lambda)(\lambda)(\lambda-2)+2(\lambda-2)-4(\lambda-2) \\
= & (\lambda-2)[(3-\lambda)(\lambda)+2-4] \\
= & (\lambda-2)(-1)\left(\lambda^{2}-3 \lambda+2\right) \\
= & -(\lambda-2)(\lambda-2)(\lambda-2) \\
= & -(\lambda-2)^{2}(\lambda-1) .
\end{aligned}
$$

Setting $-(\lambda-2)^{2}(\lambda-1)=0$ gives eigenvalues $\lambda=1$ and $\lambda=2$.
To see if f is diagonalizable, we need to check if the direct sum of the eigenspaces is all of V. That is, we need to check if the dimensions of the eigenspaces add up to $\operatorname{dim}(V)=4$.
We now need to find the eigenvectors of A. This means solving the equation

$$
(A-\lambda I) v=0
$$

where $v=\left(v_{1}, v_{2}, v_{3}\right) \in V=\mathbb{R}^{3}$.
First let $\lambda=1$. The augmented form of the above equation is

$$
\left[\begin{array}{ccc|c}
3-1 & -2 & -2 & 0 \\
-1 & 4-1 & 2 & 0 \\
2 & -4 & -2-1 & 0
\end{array}\right] \quad \rightarrow \quad\left[\begin{array}{ccc|c}
2 & -2 & -2 & 0 \\
-1 & 3 & 2 & 0 \\
2 & -4 & -3 & 0
\end{array}\right] .
$$

Now use row reduction:

$$
\begin{aligned}
{\left[\begin{array}{ccc|c}
2 & -2 & -2 & 0 \\
-1 & 3 & 2 & 0 \\
2 & -4 & -3 & 0
\end{array}\right] } & \xrightarrow{\frac{1}{2} R_{1} \rightarrow R_{1}}\left[\begin{array}{ccc|c}
1 & -1 & -1 & 0 \\
-1 & 3 & 2 & 0 \\
2 & -4 & -3 & 0
\end{array}\right] \\
& \xrightarrow{R_{2}+R_{1} \rightarrow R_{2} \text { and } R_{3}-2 R_{1} \rightarrow R_{3}}\left[\begin{array}{ccc|c}
1 & -1 & -1 & 0 \\
0 & 2 & 1 & 0 \\
0 & -2 & -1 & 0
\end{array}\right] \\
& \xrightarrow{R_{1}+R_{2} \rightarrow R_{1} \text { and } R_{3}+R_{2} \rightarrow R_{3}}\left[\begin{array}{ccc|c}
1 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

This gives the equations

$$
\begin{aligned}
v_{1}+v_{2} & =0 \\
2 v_{2}+v_{3} & =0
\end{aligned}
$$

so $v_{1}=-v_{2}$ and $v_{3}=-2 v_{2}$. The eigenvectors v can be written as

$$
v=\left[\begin{array}{c}
-v_{2} \\
v_{2} \\
-2 v_{2}
\end{array}\right]=v_{2}\left[\begin{array}{c}
-1 \\
1 \\
-2
\end{array}\right]
$$

where $v_{2} \in \mathbb{R}$. Therefore, a basis for the eigenspace E_{1} is

$$
B_{1}=\{(-1,1,-2)\}
$$

Now let $\lambda=2$. We follow the same process of solving $(A-\lambda I) v=0$:

$$
\left[\begin{array}{ccc|c}
3-2 & -2 & -2 & 0 \\
-1 & 4-2 & 2 & 0 \\
2 & -4 & -2-2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
1 & -2 & -2 & 0 \\
-1 & 2 & 2 & 0 \\
2 & -4 & -4 & 0
\end{array}\right] \xrightarrow{\text { row reduction }}\left[\begin{array}{ccc|c}
1 & -2 & -2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],
$$

so we get the single equation

$$
v_{1}-2 v_{2}-2 v_{3}=0 .
$$

This means that $v_{1}=2 v_{2}+2 v_{3}$, so the eigenvectors v can be written as

$$
v=\left[\begin{array}{c}
2 v_{2}+2 v_{3} \\
v_{2} \\
v_{3}
\end{array}\right]=v_{2}\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+v_{2}\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]
$$

where $v_{2}, v_{3} \in \mathbb{R}$. A basis for E_{2} is

$$
B_{2}=\{(2,1,0),(2,0,1)\} .
$$

Since $\operatorname{dim}\left(E_{1}\right)+\operatorname{dim}\left(E_{2}\right)=1+2=3=\operatorname{dim}(V)$ the linear map f is diagonalizable. Under the basis

$$
B=B_{1} \cup B_{2}=\{(-1,1,2),(2,1,0),(2,0,1)\}
$$

the map f is represented by the diagonal matrix

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right] .
$$

2. Let $f: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ be a linear map given by

$$
f\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{cc}
a & 2 a+b \\
2 c & c+2 d
\end{array}\right]
$$

Is f diagonalizable? If it is, express $V=M_{2 \times 2}(\mathbb{R})$ as a direct sum of one-dimensional invariant subspaces under f; then find a basis of V in which f is represented by a diagonal matrix.
Solution: Since f is a map from $M_{2 \times 2}(\mathbb{R})$ to $M_{2 \times 2}(\mathbb{R})$ we begin by finding a basis for $M_{2 \times 2}(\mathbb{R})$ and representing f as a 4×4 matrix. Consider the basis B for $M_{2 \times 2}(\mathbb{R})$ given by

$$
B=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

Applying f to the first element of B, we get

$$
f\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\right)=\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right]=1\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+2\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

so the first row of the matrix for f is

$$
\left[f\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\right)\right]_{B, B}=\left[\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right]
$$

Continuing in this way, we find that

$$
A=[f]_{B, B}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 1 & 2
\end{array}\right]
$$

Since this is a triangular matrix, the eigenvalues are simply the entries on the diagonal. That is, the eigenvalues are $\lambda=1$ and $\lambda=2$.
To see if f is diagonalizable, we need to check if the direct sum of the eigenspaces is all of V. That is, we need to check if the dimensions of the eigenspaces add up to $\operatorname{dim}(V)=4$.
We must calculate the eigenspace for each eigenvector. We want to solve

$$
(A-\lambda I) v=0
$$

for $v=\left(v_{1}, v_{2}, v_{3}, v_{4}\right) \in V$. First, let $\lambda=1$. The augmented form of the above equation is

$$
\left[\begin{array}{cccc|c}
1-1 & 0 & 0 & 0 & 0 \\
2 & 1-1 & 0 & 0 & 0 \\
0 & 0 & 2-1 & 0 & 0 \\
0 & 0 & 1 & 2-1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc|c}
0 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0
\end{array}\right] \xrightarrow{\text { row reduction }}\left[\begin{array}{llll|l}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right],
$$

so $v_{1}=v_{3}=v_{4}=0$ and the eigenvectors v can be written as

$$
v=\left[\begin{array}{c}
0 \\
v_{2} \\
0 \\
0
\end{array}\right]=v_{2}\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]
$$

where $v_{2} \in \mathbb{R}$. A basis for the eigenspace E_{1} is $B_{1}=\{(0,1,0,0)\}$ so $\operatorname{dim}\left(E_{1}\right)=1$.
(continued on next page)

Now let $\lambda=2$. We follow the same process of solving $(A-\lambda I) v=0$:

$$
\left[\begin{array}{cccc|c}
1-2 & 0 & 0 & 0 & 0 \\
2 & 1-2 & 0 & 0 & 0 \\
0 & 0 & 2-2 & 0 & 0 \\
0 & 0 & 1 & 2-2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc|c}
-1 & 0 & 0 & 0 & 0 \\
2 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right] \xrightarrow{\text { row reduction }}\left[\begin{array}{llll|l}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right],
$$

so $v_{1}=v_{2}=v_{3}=0$ and the eigenvector v can be written as

$$
v=\left[\begin{array}{l}
0 \\
0 \\
0 \\
v_{4}
\end{array}\right]=v_{4}\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

where $v_{4} \in \mathbb{R}$. A basis for the eigenspace E_{2} is $B_{2}=\{(0,0,0,1)\}$ so $\operatorname{dim}\left(E_{2}\right)=1$.
Since

$$
\operatorname{dim}\left(E_{1}\right)+\operatorname{dim}\left(E_{2}\right)=1+1=2 \neq 4=\operatorname{dim}(V)
$$

the linear map f is not diagonalizable.
3. Let V be the vector space of all smooth (infinitely differentiable) functions from \mathbb{R} to \mathbb{R}. Let $F: V \rightarrow V$ be a linear map defined by $F(u)=u^{\prime}$. Find all eigenvectors and eigenvalues of F. Solution: Since V is an infinite-dimensional vector space, we cannot solve this problem by converting to a matrix equation. Instead, we need to find the eigenvectors directly. Recall that an eigenvector of F is a vector $v \in V$ such that

$$
F(v)=\lambda v
$$

for some λ in the base field $F=\mathbb{R}$. In this case, we get the equation

$$
v^{\prime}=\lambda v .
$$

where $v=v(t)$ is a (smooth) function of the variable t. This is a differential equation that can be solved using separation of variables:

$$
\begin{aligned}
& v^{\prime}=\lambda v . \\
& \downarrow \\
& \frac{1}{v} v^{\prime}=\lambda \\
& \downarrow \\
& \int \frac{1}{v} v^{\prime} d t=\int \lambda d t \\
& \downarrow \\
& \ln (v)=\lambda t+C \\
& \downarrow \\
& v=e^{\lambda t+C}=D e^{\lambda t}
\end{aligned}
$$

In this case there was no restriction on λ when solving for v above, so every element of \mathbb{R} is an eigenvalue of F. The eigenvectors associated to the eigenvalue λ are

$$
\left\{D e^{\lambda t}: D \in \mathbb{R}\right\}
$$

A basis for the eigenspace E_{λ} is $B_{\lambda}=\left\{e^{\lambda t}\right\}$, so each eigenspace has dimension 1 .
4. Let $f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ be a linear map given by $f(v)=A v$ where

$$
A=\left[\begin{array}{cc}
1-i & 2-i \\
0 & 2+i
\end{array}\right]
$$

Is f diagonalizable? If it is, express $V=\mathbb{C}^{2}$ as a direct sum of one-dimensional invariant subspaces under f; then find a basis of V in which f is represented by a diagonal matrix.
Solution: Notice that A is a triangular matrix, so the eigenvalues are the entries on the diagonal:

$$
\lambda=1-i \quad \text { or } \quad \lambda=2+i .
$$

Since V has dimension 2 and there are 2 distinct eigenvalues, we already know that f is diagonalizable. We now need to find the eigenspace for each eigenvalue. That is, we need to solve

$$
(A-\lambda I) v=0
$$

for $v=\left(v_{1}, v_{2}\right) \in V=\mathbb{C}^{2}$. First let $\lambda=1-i$:

$$
\left[\begin{array}{cc|c}
1-i-(1-i) & 2-i & 0 \\
0 & 2+i-(1-i) & 0
\end{array}\right] \quad \rightarrow \quad\left[\begin{array}{cc|c}
0 & 2-i & 0 \\
0 & 1+2 i & 0
\end{array}\right]
$$

Perform row reduction:

$$
\begin{aligned}
& {\left[\begin{array}{cc|c}
0 & 2-i & 0 \\
0 & 1+2 i & 0
\end{array}\right] \quad \xrightarrow{\frac{1}{2-i} R_{1} \rightarrow R_{1}}\left[\begin{array}{cc|c}
0 & 1 & 0 \\
0 & 1+2 i & 0
\end{array}\right]} \\
& \xrightarrow{R_{2}-(1+2 i) R_{1} \rightarrow R_{2}}\left[\begin{array}{ll|l}
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

This gives $v_{2}=0$, so the eigenvectors v are

$$
v=\left[\begin{array}{c}
v_{1} \\
0
\end{array}\right]=v_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

where $v_{1} \in \mathbb{C}$. A basis for the eigenspace E_{1-i} is $\{(1,0)\}$.
Now let $\lambda=2$. We follow the same process of solving $(A-\lambda I) v=0$:

$$
\left[\begin{array}{cc|c}
1-i-(2+i) & 2-i & 0 \\
0 & 2+i-(2+i) & 0
\end{array}\right] \quad \rightarrow \quad\left[\begin{array}{cc}
-1-2 i & 2-i \\
0 & 0 \\
0
\end{array}\right] .
$$

Perform row reduction:

$$
\left[\begin{array}{cc|c}
-1-2 i & 2-i & 0 \\
0 & 0 & 0
\end{array}\right] \xrightarrow{\frac{1}{-1-2 i} R_{1} \rightarrow R_{1}}\left[\begin{array}{cc|c}
1 & \frac{2-i}{-1-2 i} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The fraction in the reduced matrix can be simplified:

$$
\begin{aligned}
\frac{2-i}{-1-2 i} & =\frac{2-i}{-1-2 i} \cdot \frac{-1+2 i}{-1+2 i} \\
& =\frac{(2-i)(-1+2 i)}{(-1)^{2}-(2 i)^{2}} \\
& =\frac{-2+4 i+i+2}{1+4} \\
& =\frac{5 i}{5} \\
& =i
\end{aligned}
$$

so the reduced matrix is

$$
\left[\begin{array}{ll|l}
1 & i & 0 \\
0 & 0 & 0
\end{array}\right]
$$

This gives $v_{1}+i v_{2}=0$, so $v_{1}=-i v_{2}$. The eigenvectors v can be written as

$$
v=\left[\begin{array}{c}
-i v_{2} \\
v_{2}
\end{array}\right]=v_{2}\left[\begin{array}{c}
-i \\
1
\end{array}\right]
$$

where $v_{2} \in \mathbb{C}$. A basis for the eigenspace E_{2+i} is $\{(-i, 1)\}$.
As we noted earlier, f is diagonalizable. Under the basis

$$
B=\{(1,0),(-i, 1)\}
$$

the map f is represented by the diagonal matrix

$$
\left[\begin{array}{cc}
1-i & 0 \\
0 & 2+i
\end{array}\right]
$$

