Some review problems for Midterm

In the following problems, verify your answer with valid arguments. Make sure to write in full sentences.

1. Check if the set V given below is a vector space.
(a) V is the set of all 2×2 matrices with real coefficients that have vanishing determinant.
(b) V is the set of all functions from \mathbb{R} to \mathbb{R} that vanish at 1 and 2 .
2. Let $F: \mathbb{R}^{2} \rightarrow P_{1}$ and $G: P_{1} \rightarrow M_{2 \times 2}(\mathbb{R})$ be given as

$$
F(a, b)=2 a x-b, \quad G(u)=\left[\begin{array}{cc}
u(1) & u(0) \\
u(0) & u(-1)
\end{array}\right] .
$$

Here P_{1} denotes the set of all polynomials of degree ≤ 1 with real coefficients.
(a) Show that G is a linear map.
(b) Find a matrix representation of F, G and the composite map $G \circ F$.
3. Let $F: P_{2} \rightarrow P_{2}$ be defined by $F(u)=x u^{\prime}$. Here P_{2} denotes the set of all polynomials of degree ≤ 2 with real coefficients.
(a) Show that F is a linear map.
(b) Find a matrix representation of F.
(c) Find a basis of null (F). What is the nullity of F ?
(d) Find a basis of range (F). What is the rank of F ?
(e) Is F monomorphic, epimorphic, isomorphic, or none of them? Verify your answer.

