MATH 342, MIDTERM EXAM, FALL 2019

Name	Recitation time	Student ID

- Answer to each problem must be written coherently in full sentences. Answers not supported by valid arguments will not receive full credit. Do not use ambiguous symbols such as \rightarrow, ?, \ldots, \therefore Instead, use words to transition your ideas, for example "This leads to", "Therefore", "We want to show", etc.
- Read carefully the description of each problem. Make sure that you do all parts of the problem.
- Doing correctly Problems $1,2,3,4,5$ will result in 100% credit of the exam. You can earn extra credit by doing Problem 6.

Problem	Possible points	Earned points
1	10	
2	10	
3	10	
4	10	
5	10	
6	5	
Total	55	

[This page is intentionally left blank]

Problem 1. (10 points) Let $V=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{2}=x_{1}+x_{3}\right\}$. Show that V is a vector space over \mathbb{R}.
we see that $V \subset \mathbb{R}^{3}$, and that \mathbb{R}^{3} is a vector space over \mathbb{R}.
Thus, we only need to check 3 things:
(1) O belongs to V,
(2) V is closed under addition
(3) V is closed under scaling.

Check (I):
Vector $C 0,0,0)$ indeed belongs to V because $\underbrace{0}_{x_{2}}=\underbrace{0}_{x_{1}}+\underbrace{0}_{x_{3}}$.
Check (2): Let $x=\left(x_{1}, x_{2}, x_{3}\right)$ and $y=\left(y_{1}, y_{2}, y_{3}\right)$ be two elements of V
We want to show that $x+y \in V$. we have

$$
x+y=\left(x_{1}, x_{2}, x_{3}\right)+\left(y_{1}, y_{2}, y_{3}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}\right)
$$

To show $x+y \in V$ is to show that

$$
\begin{aligned}
x_{2}+y_{2} & =\left(x_{1}+y_{1}\right)+\left(x_{3}+y_{3}\right) . \\
R H S=\left(x_{1}+x_{3}\right)+\left(y_{1}+y_{3}\right) & \left.=x_{2}+y_{2} \text { (because } x, y \in V\right) . \\
& =L H S .
\end{aligned}
$$

we have showed that (2) is true.
Check 3:
Let $x=\left(x_{1}, x_{2}, x_{3}\right) \in V$ and $c \in \mathbb{R}$. We want to show that $c x \in V$. We have $c x=\left(c_{1}, c x_{2}, c x_{3}\right)$. To show that $c x \in V$ is to show that $c x_{2}=c x_{1}+c x_{3}$.

$$
\left.R H S=c\left(x_{1}+x_{3}\right)=c x_{2} \text { (because } x \in V\right)
$$

$=$ LHS. We have showed that (3) is true.

Problem 2. (10 points) Let V be the vector space given in Problem 1. Find a basis of V. Determine the dimension of V.

We can write $V=\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{2}=x_{1}+x_{3}\right\}$

$$
\begin{aligned}
& =\left\{\left(x_{1}, x_{1}+x_{3}, x_{3}\right): x_{1}, x_{3} \in \mathbb{R}\right\} \\
& =\left\{x_{1}(1,1,0)+x_{3}(0,1,1): x_{1}, x_{3} \in \mathbb{R}\right\} \\
& =\operatorname{span}\{\underbrace{(1,1,0)}_{v_{1}}, \underbrace{0,1,1)}_{v_{2}}\}
\end{aligned}
$$

The set $B=\left\{v_{1}, v_{2}\right\}$ spans V. We will now show that B is linearly independent. Consider $a, b \in \mathbb{R}$ such that $a v_{1}+b v_{2}=0$. we have

$$
a v_{1}+b v_{2}=a(1,1,0)+b(0,1,1)=(a, a+b, b) .
$$

This vector is equal to $(0,0,0)$ only if $a=b=0$. Therefore, B is linearly independent. Thus, B is a basis of V. Then

$$
\operatorname{dim} V=\text { number of vectors in } B=2 \text {. }
$$

Problem 3. (10 points) Consider a map $f: \mathbb{R}^{2} \rightarrow M_{2 \times 2}(\mathbb{R})$ given by

$$
f(a, b)=\left[\begin{array}{cc}
b & a+b \\
0 & a
\end{array}\right] \quad \forall a, b \in \mathbb{R}
$$

Show that f is a linear map.
We need to show 2 things:
(1) f is additive.
(2) f is scalar multiplicative.

Check (1):
Let $v_{1}=\left(a_{1}, b_{1}\right)$ and $v_{2}=\left(a_{2}, b_{2}\right)$ be in \mathbb{R}^{2}. Then

$$
\begin{aligned}
& f\left(v_{1}+v_{2}\right)=f\left(a_{1}+a_{2}, b_{1}+b_{2}\right)=\left[\begin{array}{cc}
b_{1}+b_{2} & a_{1}+a_{2}+b_{1}+b_{2} \\
0 & a_{1}+a_{2}
\end{array}\right] \\
& f\left(v_{1}\right)=\left[\begin{array}{cc}
b_{1} & a_{1}+b_{1} \\
0 & a_{1}
\end{array}\right] \\
& f\left(v_{2}\right)=\left[\begin{array}{cc}
b_{2} & a_{2}+b_{2} \\
0 & a_{2}
\end{array}\right]
\end{aligned}
$$

Then $f\left(v_{1}\right)+f\left(v_{2}\right)=\left[\begin{array}{cc}b_{1} & a_{1}+b_{1} \\ 0 & a_{1}\end{array}\right]+\left[\begin{array}{cc}b_{2} & a_{2}+b_{2} \\ 0 & a_{2}\end{array}\right]=\left[\begin{array}{cc}b_{1}+b_{2} & a_{1}+b_{1}+c_{2}+b_{2} \\ 0 & a_{1}+a_{2}\end{array}\right]$
Thus, $f\left(v_{1}\right)+f\left(v_{2}\right)=f\left(u_{1}+v_{2}\right)$.
Check 2:
Let $v=(a, b) \in \mathbb{R}^{2}$ and $c \in \mathbb{R}$. We have

$$
\begin{aligned}
& f(c v)=f(c a, c b)=\left[\begin{array}{cc}
c b & c a+c b \\
0 & c a
\end{array}\right] \\
& f(v)=\left[\begin{array}{cc}
b & a+b \\
0 & a
\end{array}\right], \\
& c f(v)=\left[\begin{array}{cc}
c b & c(a+b) \\
0 & c a
\end{array}\right]=\left[\begin{array}{cc}
c b & c a+c b \\
0 & c a
\end{array}\right]
\end{aligned}
$$

Thus, $f(c v)=c f(v)$.

Problem 4. (10 points) Let f be the linear map given in Problem 3. Find a matrix representation of f.
we choose a basis for \mathbb{R}^{2} as $B_{1}=\{\underbrace{(1,0)}_{e_{1}}, \underbrace{(0,1)}_{e_{2}}\}$,
a basis for $M_{2 \times 2}(\mathbb{R})$ as $B_{2}=\left\{\begin{array}{ll}{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]}\end{array}\right] \underbrace{\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]}_{E_{1}}, \underbrace{\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]}_{E_{2}}\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$.
Then

$$
\left[\left]_{B_{2} B_{1}}=\left[\begin{array}{cc}
1 & 1 \\
{\left[f\left(e_{1}\right)\right]_{B_{2}}} & {\left[f\left(e_{2}\right)\right]_{B_{2}}} \\
1 & 1
\end{array}\right]\right.\right.
$$

We have $f\left(e_{1}\right)=f(1,0)=\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]=E_{2}+E_{4}$.
Thus, $\quad\left[f\left(e_{1}\right)\right]_{B_{2}}=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right]$
Similarly, $\quad f\left(e_{2}\right)=f(0,1)=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]=E_{1}+E_{2}$
Thus, $\quad\left[f\left(e_{2}\right)\right]_{B_{2}}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]$.
Therefore,

$$
[f]_{B_{2,}, B_{2}}=\left[\begin{array}{ll}
0 & 1 \\
1 & 1 \\
0 & 0 \\
1 & 0
\end{array}\right]
$$

Problem 5. (10 points) Consider a linear map $F: P_{2} \rightarrow P_{1}$ given by $F(u)=-u^{\prime}$. Here P_{n} denotes the vector space of all polynomials with real coefficients of degree $\leq n$. Find a basis of null (F). What are the nullity and rank of F ?

$$
\begin{aligned}
\operatorname{null}(F) & =\left\{u \in P_{2}: F(u)=0\right\} \\
& =\left\{u \in P_{2}:-u^{\prime}=0\right\} \\
& =\left\{u \in P_{2}: u \text { is a constant function }\right\} \\
& =\operatorname{span}\{1\} .
\end{aligned}
$$

The null (F) has basis $\{1\}$ and the nullity of F is therefore equal to 1 .
By rank -nullity theorem,

$$
\text { rank }+\underbrace{\text { nullity }}_{1}=\frac{\operatorname{dim} P_{2}}{3} \text {. }
$$

Hence, the rank of f is equal to $3-1=2$.

Problem 6. (5 points) Let F be the linear map given in Problem 5. Is F monomorphic, epimorphic, isomorphic or none of them? Verify your answer.

In this problem, $V=P_{2}$ and $W=P_{1}$.

$$
\operatorname{dim} V=3>\operatorname{dim} w=2
$$

Thus, F is neither monomorphic nor isomorphic.
Now we check if F is epimorphic.

$$
\begin{aligned}
\operatorname{range}(F) & =\left\{F(u): u \in P_{2}\right\} \\
& =\left\{-u^{\prime}: u \in P_{2}\right\}
\end{aligned}
$$

For each $u \in P_{2}$, we can write $u=a x^{2}+b x+c$. Then

$$
-u^{\prime}=-(2 a x+b)=-2 a x-b
$$

Then range(E) can be rewritten as

$$
\begin{aligned}
\operatorname{range}(F) & =\{-2 a x-b: a, b \in \mathbb{R}\} \\
& =\operatorname{span}\{x, 1\}
\end{aligned}
$$

Note that $\{x, 1\}$ is a basis of P_{1}. Thus, range $(F)=P_{1}$.
We conclude that F is epimorphic.

