MATH 342, MIDTERM EXAM, FALL 2019

Name	Recitation time	Student ID

- Answer to each problem must be written coherently in full sentences. Answers not supported by valid arguments will not receive full credit. Do not use ambiguous symbols such as →, ?, ..., ∴ Instead, use words to transition your ideas, for example "This leads to", "Therefore", "We want to show", etc.
- Read carefully the description of each problem. Make sure that you do all parts of the problem.
- Doing correctly Problems 1,2,3,4,5 will result in 100% credit of the exam. You can earn extra credit by doing Problem 6.

Problem	Possible points	Earned points
1	10	
2	10	
3	10	
4	10	
5	10	
6	5	
Total	55	

[This page is intentionally left blank]

Problem 1. (10 points) Let $V = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_2 = x_1 + x_3\}$. Show that V is a vector space over \mathbb{R} .

We see that
$$V = R^3$$
, and that R^3 is a vector space over R .
Thus, we only need to check 3 things:
(1) \bigcirc belongs to V ,
(2) V is closed under addition
(3) V is closed under scaling.
Check (1):
Vector (0,0,0) indeed belongs to V because $0 = 0 + 0$.
 $\frac{V}{2L} = \frac{1}{2L} - \frac{1}{2L}$
(heck (2):
Let $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3)$ be two elements
 $q V$.
We would to show that $x + y \in V$. We have
 $x + y = (x_1, x_2, x_3) + (y_1, y_2, y_3) = (x_1 + y_1 + x + y_2) + x_3 + y_3)$.
To show $x + y \in V$ is to show that
 $x + y_2 = (x_1 + y_1) + (x_3 + y_3)$.
 $R + IS = (x_1 + x_3) + (y_1 + y_3) = x_2 + y_2$ (because $x + y \in V$).
 $= LHS$.
We have showed that 2 is true.
Check 3:
Let $x = (x_1, x_2, x_3) \in V$ and $c \in IR$. We want to show

that $cx \in V$. We have $cx = (cx_1, cx_2, cx_3)$. To show that $cx \in V$ is to show that $cx_2 = cx_1 + cx_3$. $RHS = c(x_1 + x_3) = cx_2$ (became $x \in V$) = LHS. We have shared that (3) is true. **Problem 2.** (10 points) Let V be the vector space given in Problem 1. Find a basis of V. Determine the dimension of V.

We can write
$$V = \{(u_1, u_1, u_3): u_2 = u_1 + u_3\}$$

$$= \{(u_1, u_1 + u_3, u_3): u_1, u_3 \in \mathbb{R}\}$$

$$= \{u_1(1, 1, 0) + u_3(0, 1, 1): u_3, u_3 \in \mathbb{R}\}$$

$$= span \{(1, 1, 0), (0, 1, 1)\}$$

$$u_1$$

$$v_2$$
The set $B = \{u_1, u_2\}$ spans V . We will now show that B
is linearly independent. Consider $a_1 \in \mathbb{R}$ such that $au_1 + bu_2 = 0$.
We have
 $av_1 + bv_2 = a(1, 1, 0) + b(0, 1, 1) = (a_1 + a_1, b)$.
This vector is equal to $(0, 0, 0)$ only if $a = b = 0$. Therefore,

B is linearly independent. Thus, B is a basis of V. They
$$\dim V = \operatorname{number} \operatorname{of} \operatorname{vectors} \operatorname{in} B = 2$$
.

Problem 3. (10 points) Consider a map $f : \mathbb{R}^2 \to M_{2 \times 2}(\mathbb{R})$ given by

$$f(a,b) = \begin{bmatrix} b & a+b\\ 0 & a \end{bmatrix} \quad \forall a,b \in \mathbb{R}.$$

Show that f is a linear map.

We need to shap 2 things:
(1) f is additive:
(2) f is additive:
(3) f is scalar multiplication.

Check (1):
let
$$v_{12} = (a_{11}b_{1}) = a_{12}(a_{21}b_{2}) = a_{11}b_{11} = a_{12}a_{21}b_{11} = a_{12}b_{11}b_{11} = a_{12}b_{11}b_{11} = a_{12}b_{11}b_{11} = a_{12}b_{11}b_{11} = a_{12}b_{11}b_{11} = a_{12}b_{11}b_{11}b_{11}b_$$

Problem 4. (10 points) Let f be the linear map given in Problem 3. Find a matrix representation of f.

We choose a basis for
$$IR^{2}$$
 as $B_{1} = \{(1, 0), (a, 1)\}$,
 $a \text{ basis for } M_{2}(R) \text{ as } B_{2} = \{\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\}$.
Then
 $IAB_{R_{1}}R_{1} = \begin{bmatrix} A(e_{1}) \end{bmatrix}_{R_{2}} \begin{bmatrix} I(e_{2}) \end{bmatrix}_{R_{2}} \end{bmatrix}$
We have
 $f(e_{1}) = f(1, 0) = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} = E_{2} + E_{4}$.
Thus, $[f(e_{2})]_{R_{2}} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.
Similarly, $f(e_{2}) = f(0, 1) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = E_{1} + E_{2}$.
Thus, $[f(e_{2})]_{R_{2}} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.
Theorematically, $[f(e_{2})]_{R_{2}} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

Problem 5. (10 points) Consider a linear map $F : P_2 \to P_1$ given by F(u) = -u'. Here P_n denotes the vector space of all polynomials with real coefficients of degree $\leq n$. Find a basis of null(F). What are the nullity and rank of F?

$$\operatorname{null}(F) = \left\{ u \in P_2 : F(w) = 0 \right\}$$

$$= \left\{ u \in P_2 : -u' = 0 \right\}$$

$$= \left\{ u \in P_2 : u \text{ is a constant function } \right\}$$

$$= \operatorname{span}\{1\}.$$
The null(F) has basis $\{1\}$ and the nullity of F is therefore
 $u \in \operatorname{qual} t_0 \perp .$
By rank-nullity theorem,
 $\operatorname{rank} + \operatorname{nullity} = \dim P_2 .$

$$= \operatorname{the rank} of f \text{ is equal to } 3 - 1 = 2.$$

Problem 6. (5 points) Let F be the linear map given in Problem 5. Is F monomorphic, epimorphic, isomorphic or none of them? Verify your answer.

In this problem,
$$V = P_2$$
 and $W = P_1$.
dim $V = 3 > \dim W = 2$.
Thus, F is neither monomorphic nor isomorphic.
Now we check if F is epimorphic.
range(F) = { F(W) : $U \in P_2$ }
 $= \{2 - U' : U \in P_2\}$
For each $u \in P_2$, we can write $u = ax^2 + bz + c$. Then
 $-U' = -(2ax + b) = -2ax - b$.
Then range(F) can be rewritten as
range(F) = { -2ax - b : a, b $\in R$ }
 $= span \{x_i\}$
Note that $\{x_i\}$ is a basis of P_1 . Thus, range(F) = P_1 .

We conclude that F is epimorphic.