MTH 342 Worksheet 1

Week 1 - 9/26/2019
Name: Answer Key
The solutions given in this answer key are often more wordy than necessary.

1. Check if the following statements are true or false. If true, give a brief explanation. If false, give a counterexample.
(i) An $m \times n$ matrix has m rows and n columns.

Solution: True. This is simply by the definition of an $m \times n$ matrix.
(ii) If f and g are polynomials of degree n, then $f+g$ is also a polynomial of degree n.

Solution: False.
Let f and g be the following degree 3 polynomials:

$$
\begin{aligned}
& f(x)=3 x^{3}+x-1 \\
& g(x)=-3 x^{3}+x^{2}+x .
\end{aligned}
$$

Then

$$
f(x)+g(x)=x^{2}+2 x-1
$$

is a degree 2 polynomial.
What is true: If f and g are polynomials of degree n, then $f+g$ is a polynomial of degree less than or equal to n.
(iii) A linear system of 2 equations and 3 unknowns always has infinitely many solutions. Solution: False.
The system

$$
\left\{\begin{array}{l}
x+y+z=3 \\
x+y+z=4
\end{array}\right.
$$

cannot have any solutions. If it did have a solution, then

$$
3=x+y+z=4
$$

but this is clearly false, since $3 \neq 4$.
What is true: A linear system of 2 equations and 3 unknowns has either no solutions or infinitely many solutions.
(iv) A linear system of 3 equations and 2 unknowns is always inconsistent (i.e. has no solutions).
Solution: False.
The system

$$
\left\{\begin{array}{r}
x+y=5 \\
2 x-y=1 \\
-x+y=1
\end{array}\right.
$$

has the solution $x=2, y=3$ (you can check this by plugging these values into the system).

What is true: A linear system of 3 equations and 2 unknowns may have no solutions, exactly one solution, or infinitely many solutions.
2. Evaluate the following matrix operations.
(i) $\left[\begin{array}{lll}1 & -1 & 0 \\ 2 & -1 & 2\end{array}\right]\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]$

Solution: Recall matrix multiplication. Multiplying an $m \times n$ matrix A by an $n \times p$ matrix B gives an $m \times p$ matrix C. The entry in the i th row and j th column of C is obtained by multiplying term-by-term the entries of the i th row of A and the j th column of B, and summing these m products.

$$
\begin{aligned}
{\left[\begin{array}{lll}
1 & -1 & 0 \\
2 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right] } & =\left[\begin{array}{l}
(1)(2)+(-1)(3)+(0)(1) \\
(2)(2)+(-1)(3)+(2)(1)
\end{array}\right] \\
& =\left[\begin{array}{c}
-1 \\
3
\end{array}\right]
\end{aligned}
$$

(ii) $\left[\begin{array}{c}1 \\ -1\end{array}\right]+\left[\begin{array}{ll}2 & 0\end{array}\right]$

Solution: You cannot add matrices of different dimensions.
(iii) $\left[\begin{array}{c}1 \\ -1\end{array}\right]\left[\begin{array}{ll}2 & 0\end{array}\right]$

Solution:

$$
\begin{aligned}
{\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\left[\begin{array}{ll}
2 & 0
\end{array}\right] } & =\left[\begin{array}{cc}
(1)(2) & (1)(0) \\
(-1)(2) & (1)(0)
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 & 0 \\
-2 & 0
\end{array}\right]
\end{aligned}
$$

(iv) $(1+i)\left[\begin{array}{cc}1-2 i & 2+i \\ 0 & 1-i\end{array}\right]$

Solution: Recall that multiplying a matrix by a scalar (i.e. a number) simply multiplies each entry in the matrix by that scalar.

$$
\begin{aligned}
(1+i)\left[\begin{array}{cc}
1-2 i & 2+i \\
0 & 1-i
\end{array}\right] & =\left[\begin{array}{cc}
(1+i)(1-2 i) & (1+i)(2+i) \\
(1+i)(0) & (1+i)(1-i)
\end{array}\right] \\
& =\left[\begin{array}{cc}
1-2 i+i-2 i^{2} & 2+i+2 i+i^{2} \\
0 & 1-i+i-i^{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
1-i-2(-1) & 2+3 i+(-1) \\
0 & 1-(-1)
\end{array}\right] \\
& =\left[\begin{array}{cc}
3-i & 1+3 i \\
0 & 2
\end{array}\right]
\end{aligned}
$$

3. Give an example of a fourth degree polynomial with four distinct complex roots, two of which are real, the other two of which are not.
Solution: This problem can be solved by writing the polynomial in factored form:

$$
\left(x-r_{1}\right)\left(x-r_{2}\right)\left(x-r_{3}\right)\left(x-r_{4}\right)
$$

where r_{1}, \ldots, r_{4} are the roots of the polynomial. For example, the polynomial

$$
(x-1)(x+2)(x+1-i)(x-2-3 i)
$$

has real roots 1 and -2 and non-real roots $-1+i$ and $2+3 i$.
Another particularly simple solution (this time written in standard form) is the polynomial $x^{4}-1$ which has roots $1,-1, i$, and $-i$. You can check this by plugging each root into the polynomial and verifying that you get 0 .
4. Consider the set $S=\left\{\left(x, e^{x}\right): x \in \mathbb{R}\right\}$.
(i) Visualize S.
(ii) Is S closed under addition or scaling?
(iii) Verify your answer algebraically and geometrically.

Solution: The set S can be visualized as the graph of the function $y=e^{x}$ in the $x-y$ plane:

S is not closed under addition or scaling. To prove this algebraically, consider the element $\left(0, e^{0}\right)=(0,1) \in S$. Then

$$
(0,1)+(0,1)=2 \cdot(0,1)=(0,2) \notin S .
$$

S is not closed under addition, because $(0,1)+(0,1) \notin S . S$ is also not closed under scaling, because $2 \cdot(0,1) \notin S$. This can be verified visually by seeing that the point $(0,2)$ does not lie on the curve $y=e^{x}$.
Geometrically, addition can be viewed as a translation in the plane (i.e., a shift). For example, adding $(0,1)$ (which is an element of S) shifts a point up by 1 . Notice that shifting any point on the curve $y=e^{x}$ up by 1 gives a new point that is not on the curve. Since $(0,1)$ is an element of S, this means that S is not closed under addition.
In the x-y plane, scalar multiplication can be viewed geometrically as stretching from or compressing towards the origin. Multiplication by a negative number causes a flip across the origin. Notice that scalar multiplication by 0 always gives the point (0,0) (i.e, it compresses all points down to the origin). In particular, $0 \cdot\left(x, e^{x}\right)=(0,0)$. Since $(0,0)$ is not on the curve $y=e^{x}$, this shows that S is not closed under scalar multiplication.
5. Solve the following linear system using the row reduction method (Gauss or Gauss-Jordan):

$$
\left\{\begin{array}{rlc}
3 x+2 y-z & = & 1 \\
x-y+2 z & = & -1
\end{array}\right.
$$

Solution: There are many ways to do this. Here is one:

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
3 & 2 & -1 & 1 \\
1 & -1 & 2 & -1
\end{array}\right] \xrightarrow{\text { swap } R_{1} \text { and } R_{2}}\left[\begin{array}{ccc|c}
1 & -1 & 2 & -1 \\
3 & 2 & -1 & 1
\end{array}\right] } \\
& \xrightarrow{R_{2}-3 R_{1} \rightarrow R_{2}} {\left[\begin{array}{ccc|c}
1 & -1 & 2 & -1 \\
0 & 5 & -7 & 4
\end{array}\right] } \\
& \xrightarrow{5 R_{1} \rightarrow R_{1}} {\left[\begin{array}{ccc|c}
5 & -5 & 10 & -5 \\
0 & 5 & -7 & 4
\end{array}\right] } \\
& \xrightarrow{R_{1}+R_{2} \rightarrow R_{1}}\left[\begin{array}{ccc|c}
5 & 0 & 3 & -1 \\
0 & 5 & -7 & 4
\end{array}\right] \\
& \xrightarrow{\frac{1}{5} R_{1} \rightarrow R_{1}}\left[\begin{array}{ccc|c}
1 & 0 & \frac{3}{5} & -\frac{1}{5} \\
0 & 5 & -7 & 4
\end{array}\right] \\
& \xrightarrow{\frac{1}{5} R_{2} \rightarrow R_{2}}\left[\begin{array}{ccc|c}
1 & 0 & \frac{3}{5} & -\frac{1}{5} \\
0 & 1 & -\frac{7}{5} & \frac{4}{5}
\end{array}\right] \\
& x+\frac{3}{5} z=-\frac{1}{5} \\
& y-\frac{7}{5} z=\frac{4}{5}
\end{aligned}
$$

so the solutions are given by

$$
\begin{aligned}
x & =-\frac{1}{5}-\frac{3}{5} z, \\
y & =\frac{4}{5}+\frac{7}{5} z,
\end{aligned}
$$

with z an arbitrary scalar.

