MTH 342 Worksheet 10

Week 10 - 12/05/2019
Name: \qquad Recitation time: \qquad

1. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear map given by $f(v)=A v$ where

$$
A=\left[\begin{array}{ccc}
4 & -3 & -3 \\
3 & -2 & -3 \\
-1 & 1 & 2
\end{array}\right]
$$

Is f diagonalizable? If it is, express $V=\mathbb{R}^{3}$ as a direct sum of one-dimensional invariant subspaces under f; then find a basis of V in which f is represented by a diagonal matrix.
Solution: First find the characteristic polynomial of A :

$$
\begin{aligned}
\operatorname{det}(A-\lambda I)= & \left|\begin{array}{ccc}
4-\lambda & -3 & -3 \\
3 & -2-\lambda & -3 \\
-1 & 1 & 2-\lambda
\end{array}\right| \\
= & (4-\lambda)\left|\begin{array}{cc}
-2-\lambda & -3 \\
1 & 2-\lambda
\end{array}\right|-3\left|\begin{array}{cc}
-3 & -3 \\
1 & 2-\lambda
\end{array}\right|+(-1)\left|\begin{array}{cc}
-3 & -3 \\
-2-\lambda & -3
\end{array}\right| \\
= & (4-\lambda)[(-2-\lambda)(2-\lambda)-(-3)(1)] \\
& -3[(-3)(2-\lambda)-(-3)(1)] \\
& \quad[(-3)(-3)-(-3)(-2-\lambda)] \\
= & (4-\lambda)\left(\lambda^{2}-1\right)-3(3 \lambda-3)-(-3 \lambda+3) \\
= & (4-\lambda)(\lambda-1)(\lambda+1)-3(3)(\lambda-1)-(-3)(\lambda-1) \\
= & (\lambda-1)[(4-\lambda)(\lambda+1)-9+3] \\
= & (\lambda-1)\left[-\lambda^{2}+3 \lambda-2\right] \\
= & (\lambda-1)[-(\lambda-1)(\lambda-2)] \\
= & -(\lambda-1)^{2}(\lambda-2)
\end{aligned}
$$

Setting $-(\lambda-1)^{2}(\lambda-2)=0$ gives eigenvalues $\lambda=1$ and $\lambda=2$.
We still do not know if f is diagonalizable. We now need to find the eigenvectors of A. This means solving the equation

$$
(A-\lambda I) v=0
$$

where $v=\left(v_{1}, v_{2}, v_{3}\right)$.
First let $\lambda=-1$. The augmented form of the above equation is

$$
\left[\begin{array}{ccc|c}
4-1 & -3 & -3 & 0 \\
3 & -2-1 & -3 & 0 \\
-1 & 1 & 2-1 & 0
\end{array}\right] \quad \rightarrow \quad\left[\begin{array}{ccc|c}
3 & -3 & -3 & 0 \\
3 & -3 & -3 & 0 \\
-1 & 1 & 1 & 0
\end{array}\right]
$$

Row reduction gives

$$
\left[\begin{array}{ccc|c}
1 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Thus $v_{1}-v_{2}-v_{3}=0$. Adding $v_{2}+v_{3}$ to both sides gives $v_{1}=v_{2}+v_{3}$, so the eigenvectors v can be written as

$$
v=\left[\begin{array}{c}
v_{2}+v_{3} \\
v_{2} \\
v_{3}
\end{array}\right]=v_{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+v_{3}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

(continued on next page)

Therefore a basis for the eigenspace E_{1} is

$$
B_{1}=\{(1,1,0),(1,0,1)\}
$$

Now let $\lambda=2$. We follow the same process of solving $(A-\lambda I) v=0$:

$$
\left[\begin{array}{ccc|c}
4-2 & -3 & -3 & 0 \\
3 & -2-2 & -3 & 0 \\
-1 & 1 & 2-2 & 0
\end{array}\right] \quad \rightarrow \quad\left[\begin{array}{ccc|c}
2 & -3 & -3 & 0 \\
3 & -4 & -3 & 0 \\
-1 & 1 & 0 & 0
\end{array}\right]
$$

Row reduction gives

$$
\left[\begin{array}{ccc|c}
1 & 0 & 3 & 0 \\
0 & 1 & 3 & 0 \\
-1 & 1 & 0 & 0
\end{array}\right]
$$

so we get the system of equations

$$
\begin{aligned}
& v_{1}+3 v_{3}=0 \\
& v_{2}+3 v_{3}=0
\end{aligned}
$$

This means that $v_{1}=v_{2}=-3 v_{3}$, so the eigenvector v can be written as

$$
v=\left[\begin{array}{c}
-3 v_{3} \\
-3 v_{3} \\
v_{3}
\end{array}\right]=v_{3}\left[\begin{array}{c}
-3 \\
-3 \\
1
\end{array}\right]
$$

A basis for E_{2} is

$$
B_{2}=\{(-3,-3,1)\}
$$

Since $\operatorname{dim}\left(E_{1}\right)+\operatorname{dim}\left(E_{2}\right)=2+1=3=\operatorname{dim}(V)$ the linear map f is diagonalizable. Under the basis

$$
B=B_{1} \cup B_{2}=\{(1,1,0),(1,0,1),(-3,-3,1)\}=\left\{w_{1}, w_{2}, w_{3}\right\}
$$

the map f is represented by the diagonal matrix

$$
[f]_{B, B}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

and

$$
V=\mathbb{R}^{3}=\mathbb{R} w_{1} \oplus \mathbb{R} w_{2} \oplus \mathbb{R} w_{3}
$$

where each $\mathbb{R} w_{i}$ is an invariant subspace under f.
2. Let $F: \mathbb{R}^{\infty} \rightarrow \mathbb{R}^{\infty}$ be the left-shift operator

$$
F\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{2}, x_{3}, x_{4}, \ldots\right)
$$

Find all eigenvalues and eigenvectors of F.
Solution: Here we are working with an infinite dimensional vector space, so we cannot simply find the eigenvectors of a matrix. We must use the definition of the eigenvector.

The eigenvectors of F are the vectors $v=\left(x_{1}, x_{2} \ldots\right) \in \mathbb{R}^{\infty}$ such that $F(v)=\lambda v$ for some $\lambda \in \mathbb{R}$. In this case we have

$$
\begin{aligned}
\left(x_{2}, x_{3}, x_{4}, \ldots\right) & =\lambda\left(x_{1}, x_{2}, x_{3}, \ldots\right) \\
& =\left(\lambda x_{1}, \lambda x_{2}, \lambda x_{3}, \ldots\right)
\end{aligned}
$$

so

$$
\begin{aligned}
x_{2} & =\lambda x_{1} \\
x_{3} & =\lambda x_{2} \\
x_{4} & =\lambda x_{3}
\end{aligned}
$$

We can now write every coordinate in terms of x_{1} :

$$
\begin{aligned}
& x_{2}=\lambda x_{1} \\
& x_{3}=\lambda x_{2}=\lambda\left(\lambda x_{1}\right)=\lambda^{2} x_{1} \\
& x_{4}=\lambda x_{3}=\lambda\left(\lambda^{2} x_{1}\right)=\lambda^{3} x_{1}
\end{aligned}
$$

so the eigenvector v looks like

$$
\begin{aligned}
v & =\left(x_{1}, \lambda x_{1}, \lambda^{2} x_{1}, \lambda^{3} x_{1}, \ldots\right) \\
& =x_{1}\left(1, \lambda, \lambda^{2}, \lambda^{3}, \ldots\right) .
\end{aligned}
$$

There is no restriction on λ in our work above, so every element $\lambda \in \mathbb{R}$ is an eigenvalue. The eigenspace associated to the eigenvalue λ is

$$
E_{\lambda}=\left\{x_{1}\left(1, \lambda, \lambda^{2}, \lambda^{3}, \ldots\right): x_{1} \in \mathbb{R}\right\}
$$

which has basis

$$
B_{\lambda}=\left\{\left(1, \lambda, \lambda^{2}, \lambda^{3}, \ldots\right)\right\} .
$$

3. Let $g: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ be the linear map given by $g(v)=B v$ where

$$
B=\left[\begin{array}{cc}
i & 1 \\
2 & 1+i
\end{array}\right] .
$$

(a) Find the eigenvalues of g. Why does this show that g is diagonalizable?

Solution: Calculate the characteristic polynomial:

$$
\begin{aligned}
\operatorname{det}(B-\lambda I) & =\left|\begin{array}{cc}
i-\lambda & 1 \\
2 & 1+i-\lambda
\end{array}\right| \\
& =(i-\lambda)(1+i-\lambda)-2 \\
& =\lambda^{2}-(1+2 i) \lambda+(-3+i)
\end{aligned}
$$

To solve $\operatorname{det}(A-\lambda I)=0$ we can use the quadratic formula:

$$
\begin{aligned}
\lambda & =\frac{(1+2 i) \pm \sqrt{[-(1+2 i)]^{2}-4(-3+i)}}{2} \\
& =\frac{(1+2 i) \pm \sqrt{-3+4 i+12-4 i)}}{2} \\
& =\frac{(1+2 i) \pm \sqrt{9}}{2} \\
& =\frac{(1+2 i) \pm 3}{2}
\end{aligned}
$$

so

$$
\lambda=2+i \quad \text { or } \quad \lambda=-1+i .
$$

Since \mathbb{C}^{2} is 2-dimensional and g has two distinct roots, this means that g is diagonalizable.
(b) Find a basis of \mathbb{C}^{2} in which g is represented by a diagonal matrix.

Solution: To find the eigenvectors, solve $(A-\lambda I) v=0$ where $v=\left(v_{1}, v_{2}\right) \in \mathbb{C}^{2}$. First let $\lambda=2+i$:

$$
\begin{aligned}
& {\left[\begin{array}{cc|c}
i-(2+i) & 1 & 0 \\
2 & 1+i-(2+i) & 0
\end{array}\right] \xrightarrow{\text { simplify }}\left[\begin{array}{cc|c}
-2 & 1 & 0 \\
2 & -1 & 0
\end{array}\right] } \\
& \xrightarrow{R_{2}+R_{1} \rightarrow R_{2}}\left[\begin{array}{cc|c}
-2 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

The first line of the reduced matrix gives $-2 v_{1}+v_{2}=0$, so $v_{2}=2 v_{1}$. We can write the eigenvector v as

$$
\left[\begin{array}{c}
v_{1} \\
2 v_{1}
\end{array}\right]=v_{1}\left[\begin{array}{l}
1 \\
2
\end{array}\right],
$$

so a basis for E_{2+i} is

$$
B_{2+i}=\{(1,2)\}
$$

Now let $\lambda=-1+i$:

$$
\left.\begin{array}{rl|c|c}
{\left[\begin{array}{cc}
i-(-1+i) \\
2 & 1+i-(-1+i)
\end{array}\right.} & 0 \\
\hline
\end{array}\right] \xrightarrow{\text { simplify }}\left[\begin{array}{ll|l}
1 & 1 & 0 \\
2 & 2 & 0
\end{array}\right]
$$

Then $v_{1}+v_{2}=0$, so $v_{2}=-v_{1}$. We can write the eigenvector v as

$$
\left[\begin{array}{c}
v_{1} \\
-v_{1}
\end{array}\right]=v_{1}\left[\begin{array}{c}
1 \\
-1
\end{array}\right],
$$

so a basis for E_{-1+i} is

$$
B_{-1+i}=\{(1,-1)\}
$$

Let

$$
B=\{(1,2),(1,-1)\}=\left\{w_{1}, w_{2}\right\} .
$$

Then B is a basis for \mathbb{C}^{2} and the map g is represented by the diagonal matrix

$$
[g]_{B, B}=\left[\begin{array}{cc}
2+i & 0 \\
0 & -1+i
\end{array}\right],
$$

