MTH 342 Worksheet 2

Week $1 - \frac{10}{03}/2019$

Name: Answer Key

Recitation time: ____

Let F be a field of scalars and let V be a set with defined addition and scalar multiplication. The vector space axioms are

- (A0) Closed under addition: If $\mathbf{u}, \mathbf{v} \in V$, then $\mathbf{u} + \mathbf{v} \in V$.
- 1. (A1) Commutativity of addition: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ for all $\mathbf{u}, \mathbf{v} \in V$.
- 2. (A2) Associativity of addition: $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$.
- 3. (A3) Zero vector: There exists a vector $\mathbf{0} \in V$ such that $\mathbf{v} + \mathbf{0} = \mathbf{v}$ for all $\mathbf{v} \in V$.
- 4. (A4) Additive inverse: For every vector $\mathbf{v} \in V$ there exists a vector $\mathbf{w} \in V$ such that $\mathbf{v} + \mathbf{w} = \mathbf{0}$.
- (S0) Closed under scalar multiplication: If $\mathbf{v} \in V$ and $\alpha \in F$, then $\alpha \mathbf{v} \in V$.
- 5. (S1) Multiplicative identity: $1\mathbf{v} = \mathbf{v}$ for all $\mathbf{v} \in V$.
- 6. (S2) Associativity of scalar multiplication: $(\alpha\beta)\mathbf{v} = \alpha(\beta\mathbf{v})$ for all $\mathbf{v} \in V$ and all scalars α, β .
- 7. (I1) Scalar distribution 1: $\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$ for all $\mathbf{u}, \mathbf{v} \in V$ and all scalars α .
- 8. (I2) Scalar distribution 2: $(\alpha + \beta)\mathbf{v} = \alpha \mathbf{v} + \beta \mathbf{v}$ for all $\mathbf{v} \in V$ and all scalars α, β
- **1.** Consider the set $S = \{(x, y) : x, y \in \mathbb{R} \text{ and } x \neq 0\} \cup \{(0, 0)\}$ with scalars in \mathbb{R} and with addition and scalar multiplication defined componentwise. This is *not* a vector space. Why not? Which vector space axioms does S violate? Which does it satisfy?

Solution: First consider the axioms that S violates:

• S does not satisfy axiom A0 – it is not closed under addition. Let $\mathbf{v} = (1, 1)$ and $\mathbf{u} = (-1, 1)$. Then $\mathbf{u}, \mathbf{v} \in V$ since neither first coordinate is 0, but

$$\mathbf{u} + \mathbf{v} = (1, 1) + (-1, 1) = (0, 2) \notin V.$$

• I would say that axioms A1, A2, and I1 are violated (although this *might* be debatable). This is because they each assume that axiom A0 is true. For example, consider again $\mathbf{v} = (1,0)$ and $\mathbf{u} = (-1,1)$. Then the statement

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

of axiom A1 is meaningless, because $\mathbf{u} + \mathbf{v}$ and $\mathbf{v} + \mathbf{u}$ do not exist (as elements of V). A similar problem occurs when checking axioms A2 and I1.

All other axioms are satisfied:

- A3: Consider the element $(0,0) \in S$. Then (0,0) + (x,y) = (x,y) for any $(x,y) \in S$, so $\mathbf{0} = (0,0)$ and axiom A3 is satisfied.
- A4: Let $(x, y) \in S$. If x = 0 then y = 0, and so $(0, 0) \in S$ is the additive inverse of (x, y). Otherwise $x \neq 0$, so $-x \neq 0$. Therefore $(-x, -y) \in S$. Now

$$(x, y) + (-x, -y) = (0 + 0) = \mathbf{0}$$

so (-x, -y) is the additive inverse of (x, y) and axiom A4 is satisfied.

- S0: Let $\alpha \in \mathbb{R}$ and $(x, y) \in S$. There are three cases:
 - (i) $\alpha = 0$: Then $\alpha(x, y) = (0, 0) \in S$.
 - (ii) $\alpha \neq 0, x = 0$: Since x = 0, we also have y = 0, so $\alpha(x, y) = (0, 0) \in S$.
 - (iii) $\alpha \neq 0, x \neq 0$: Then $\alpha x \neq 0$, so $\alpha(x, y) = (\alpha x, \alpha y) \in S$.
- S1: Let $(x, y) \in S$. Then 1(x, y) = ((1)x, (1)y) = (x, y).

• S2: Let $(x, y) \in S$ and $\alpha, \beta \in \mathbb{R}$. Then

$$(\alpha\beta)(x,y) = ((\alpha\beta)x, (\alpha\beta)y)$$

= $(\alpha(\beta x), \alpha(\beta y))$ by associativity of multiplication in \mathbb{R}
= $\alpha(\beta x, \beta y)$
= $\alpha(\beta(x, y)).$

• I2: Let $(x, y) \in S$ and $\alpha, \beta \in \mathbb{R}$. Then

$$(\alpha + \beta)(x, y) = ((\alpha + \beta)x, (\alpha + \beta)y)$$

= $(\alpha x + \beta x, \alpha y + \beta y)$ by distribution of in \mathbb{R}
= $(\alpha x, \alpha y) + (\beta x, \beta y)$
= $\alpha(x, y) + \beta(x, y).$

2. Let V be a vector space and let **0** be the zero vector in V. Below is a proof that $\alpha \mathbf{0} = \mathbf{0}$ for any scalar α . Fill in the blanks with the axiom used at each step:

proof. Let α be a scalar and let $-(\alpha \mathbf{0})$ be the additive inverse of $\alpha \mathbf{0}$. Then

$0 = \alpha 0 + [-(\alpha 0)]$	A4: Additive inverse
$= \alpha (0 + 0) + [-(\alpha 0)]$	A3: Zero vector
$= (\alpha 0 + \alpha 0) + [-(\alpha 0)]$	<u>I1: Scalar distribution 1</u>
$= \alpha 0 + (\alpha 0 + [-(\alpha 0)])$	A2: Associativity of addition
$= \alpha 0 + 0$	A4: Additive inverse
$= \alpha 0.$	A4: Zero vector

3. Let V be a vector space. For any v ∈ V let -v denote the additive inverse of v. Prove that -(-v) = v for any v ∈ V. (Hint: consider v + [-v] + [-(-v)] and simplify in two different ways).

Solution: Let $\mathbf{v} \in V$. Then

4. Let $n \ge 0$ be a fixed integer, let V be the set of polynomials of degree less than or equal to n, and let $F = \mathbb{R}$ be the field of scalars. Assume that addition and scalar multiplication are defined in the expected way. Prove that V satisfies axioms A0, A3, and S0 (this means that V is a **subspace** of the vector space of *all* polynomials).

Solution: Remember that a polynomial f(x) has the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

for some integer $n \ge 0$ and scalars a_0, \ldots, a_n . We say that f(x) is of degree k if $a_k \ne 0$ and $a_i = 0$ for all i > n (so k is the largest power of x occurring in f(x)). A polynomial of degree less than or equal to k must have $a_i = 0$ for all i > k, but may also have $a_k = 0$.

Now we prove the three axioms:

• A0: Let $f, g \in V$. Then f and g can be written as

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

$$g(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_n x^n$$

where a_0, \ldots, a_n and b_0, \ldots, b_n are scalars. Then

$$f(x) + g(x) = (a_0 + a_1x + a_2x^2 + \dots + a_nx^n) + (b_0 + b_1x + b_2x^2 + \dots + b_nx^n)$$

= $(a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2 + \dots + (a_n + b_n)x^n$

so f + g is a polynomial of degree less than or equal to n. Therefore $f + g \in V$.

- A3: Let z(x) = 0. Then z is a polynomial of degree 0, which is less than or equal to n, so $z \in V$. It is easy to check that f + z = f for any polynomial f.
- S0: Let $\beta \in \mathbb{R}$ be a scalar and define f(x) as we did above. Then

$$\alpha f(x) = \beta (a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n)$$

= $(\beta a_0) + (\beta a_1) x + (\beta a_2) x^2 + \dots + (\beta a_n) x^n$

so αf is a polynomial of degree less than or equal to n.

- 5. The set $V = \mathbb{C}$ of complex numbers can be thought of as a vector space with scalars in \mathbb{R} . Addition and scalar multiplication are defined by standard addition and multiplication in \mathbb{C} (you should check that this is a vector space, but you do *not* need to write the proof here).
 - (a) Find two vectors \mathbf{u} and \mathbf{v} in V such that any element of V can be written as

 $\alpha \mathbf{u} + \beta \mathbf{v}$

for some scalars $\alpha, \beta \in \mathbb{R}$.

Solution: The simplest solution is $\mathbf{u} = 1 \in \mathbb{C} = V$ and $\mathbf{v} = i \in \mathbb{C} = V$. We know that any complex number $\mathbf{z} \in \mathbb{C} = V$ can be written as the sum of a real part and an imaginary part:

$$\mathbf{z} = \alpha + \beta i.$$

for some $\alpha, \beta \in \mathbb{R}$. Then

$$\mathbf{z} = \alpha + \beta i$$

= $\alpha(1) + \beta(i)$
= $\alpha \mathbf{u} + \beta \mathbf{v}$.

$\alpha \mathbf{u} + \beta \mathbf{v}$ is called a **linear combination of u and v.**

(b) Is it possible to find a single vector $\mathbf{w} \in V$ such that every vector of V can be written as $\alpha \mathbf{w}$ for some scalar α ? If so, find such a \mathbf{w} . If not, explain why or give a counter example.

Solution: It is not possible to find such a **w**. To see why, suppose that such a **w** exists. Then $1 \in \mathbb{C}$ can be written as a scalar multiple of **w**:

$$\alpha \mathbf{w} = 1$$
 for some $\alpha \in \mathbb{R}$.

Now multiply both sides by $\frac{1}{\alpha}$:

$$\mathbf{w} = \frac{1}{\alpha} \qquad \text{for some } \alpha \in \mathbb{R}.$$

This means that $\mathbf{w} = \frac{1}{\alpha}$ is a real number (since α is a real number). Since \mathbf{w} is a real number, any scalar multiple of \mathbf{w} is also a real number (since the field of scalars is \mathbb{R}). This means that $i \in \mathbb{C}$ cannot be a scalar multiple of \mathbf{w} . This is a contradiction, because we assumed that every complex number could be written as a scalar multiple of \mathbf{w} . Therefore no such \mathbf{w} exists.