MTH 342 Worksheet 2
Week 1 — 10/03/2019

Name: Answer Key Recitation time:

Let F be a field of scalars and let V' be a set with defined addition and scalar multiplication. The
vector space axioms are

A0) Closed under addition: If u,v € V, then u+v € V.

1) Commutativity of addition: u+v=v+ufor allu,ve V.

2) Associativity of addition: (u+v)+w=u+ (v+w) for all u,v,w e V.

A3) Zero vector: There exists a vector 0 € V such that v+ 0=v for all ve V.

A4) Additive inverse: For every vector v € V there exists a vector w € V such that v+w = 0.
S0) Closed under scalar multiplication: If v e V and a € F, then av € V.

S1) Multiplicative identity: 1v =v for all v € V.

S2) Associativity of scalar multiplication: (a8)v = a(5v) for all v € V and all scalars a, .
Scalar distribution 1: a(u+ v) = au+ av for all u,v € V and all scalars c.

Scalar distribution 2: (a4 8)v = av + fv for all v € V' and all scalars «, 8
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. Consider the set S = {(z,y) : z,y € Rand z # 0} U {(0,0)} with scalars in R and with
addition and scalar multiplication defined componentwise. This is not a vector space. Why
not? Which vector space axioms does S violate? Which does it satisfy?

Solution: First consider the axioms that S violates:

e S does not satisfy axiom AO — it is not closed under addition. Let v = (1,1) and
u = (—1,1). Then u,v € V since neither first coordinate is 0, but

ut+v=(1,1)+(-1,1) =(0,2) ¢ V.

e [ would say that axioms A1, A2, and I1 are violated (although this might be debatable).
This is because they each assume that axiom AOQ is true. For example, consider again
v = (1,0) and u = (—1,1). Then the statement

ut+v=v-+u

of axiom A1 is meaningless, because u+ v and v 4 u do not exist (as elements of V). A
similar problem occurs when checking axioms A2 and I1.

All other axioms are satisfied:

e A3: Consider the element (0,0) € S. Then (0,0) + (z,y) = (z,y) for any (z,y) € S, so
0 = (0,0) and axiom A3 is satisfied.

o Ad: Let (xz,y) € S. If 2 = 0 then y = 0, and so (0,0) € S is the additive inverse of
(x,y). Otherwise = # 0, so —z # 0. Therefore (—z, —y) € S. Now

(z,y) + (—z,—y) = (0+0) =0

so (—z, —y) is the additive inverse of (z,y) and axiom A4 is satisfied.
e 50: Let & € R and (x,y) € S. There are three cases:
(i) o =0: Then a(z,y) = (0,0) € S.
(ii) a # 0, x = 0: Since x = 0, we also have y = 0, so a(z,y) = (0,0) € S.
(iii)) o # 0,  # 0: Then az # 0, so a(z,y) = (ax,ay) € S.
e S1: Let (z,y) € S. Then 1(z,y) = (1)z, (1)y) = (x,y).



e S2: Let (z,y) € S and a, f € R. Then

(@B)(z,y) = ((af)z, (aB)y)
= (a(Bz), a(By)) by associativity of multiplication in R

e 12: Let (z,y) € S and «, 8 € R. Then

(a+B)(z,y) = ((a+ Bz, (a + By)
ar + Bz, ay + By) by distribution of in R
= (az, ay) + (Bz, By)

(
afz,y) + Bz, y).

= (
= (

2. Let V be a vector space and let 0 be the zero vector in V. Below is a proof that a0 = 0 for
any scalar «. Fill in the blanks with the axiom used at each step:

proof. Let « be a scalar and let —(a0) be the additive inverse of 0. Then

0 = a0 + [—(«0)] A4: Additive inverse
=a(0+0) + [—(a0)] A3: Zero vector
= (a0 + a0) + [—(a0)] I1: Scalar distribution 1
= a0+ (a0 + [—(a0)]) A2: Associativity of addition
=a0+0 A4: Additive inverse
= a0. A4: Zero vector

3. Let V be a vector space. For any v € V let —v denote the additive inverse of v. Prove that
—(—v)=v forany veV.
(Hint: consider v + [—v] + [—(—V)] and simplify in two different ways).

Solution: Let v € V. Then

(v V) + (V)] = v+ (V] + (=) (by axiom A2)
O+ [—(—v)]=v+0 (by axiom A4)

!
—(—v)=v (by axiom A3).



4. Let n > 0 be a fixed integer, let V' be the set of polynomials of degree less than or equal to
n, and let F' = R be the field of scalars. Assume that addition and scalar multiplication are
defined in the expected way. Prove that V satisfies axioms A0, A3, and SO (this means that
V is a subspace of the vector space of all polynomials).

Solution: Remember that a polynomial f(z) has the form
f(x) = ap + a1z + agaz® + - + apa"

for some integer n > 0 and scalars ao,...,a,. We say that f(x) is of degree k if a; # 0
and a; = 0 for all i > n (so k is the largest power of x occurring in f(x)). A polynomial of
degree less than or equal to k& must have a; = 0 for all ¢ > k, but may also have a; = 0.

Now we prove the three axioms:
e AO: Let f,g € V. Then f and g can be written as

f(z) = ag + a1 + asx® + - - + a "™
g(z) = by + b1x + box® + -+ - + bya"

where ag, ..., a, and by, ..., b, are scalars. Then

f(z)+ g(z) = (ap + a1z + agz® + - - + anz™) + (b + b1z + box® + - - - + byz™)
= (ao + bo) + (a1 + b1)z + (az + b2)a® + -+ + (an + bp)z"

so f + g is a polynomial of degree less than or equal to n. Therefore f+ g € V.

e A3: Let z(x) = 0. Then z is a polynomial of degree 0, which is less than or equal to n,
so z € V. It is easy to check that f 4+ z = f for any polynomial f.

e S0: Let 8 € R be a scalar and define f(x) as we did above. Then

af(x) = plag + a1z + apx? + -+ anz™)
= (Bag) + (Bar)z + (Baz)a® + - - - + (Bay)z"

so af is a polynomial of degree less than or equal to n.



5. The set V = C of complex numbers can be thought of as a vector space with scalars in R.
Addition and scalar multiplication are defined by standard addition and multiplication in C
(you should check that this is a vector space, but you do not need to write the proof here).

(a)

Find two vectors u and v in V such that any element of V' can be written as
ou + fv

for some scalars a, 5 € R.

Solution: The simplest solutionisu=1€ C =V and v=1 € C = V. We know
that any complex number z € C = V can be written as the sum of a real part and an
imaginary part:

z = o+ [i.

for some «, 5 € R. Then

z=aqa+ fi
=a(1) + (i)
= au+ fv.

au + v is called a linear combination of u and v.

Is it possible to find a single vector w € V such that every vector of V' can be written
as aw for some scalar a? If so, find such a w. If not, explain why or give a counter
example.

Solution: It is not possible to find such a w. To see why, suppose that such a w exists.
Then 1 € C can be written as a scalar multiple of w:

aw =1 for some o € R.

Now multiply both sides by é:

1
W= — for some « € R.
«

This means that w = 1 is a real number (since a is a real number). Since w is a

real number, any scalar multiple of w is also a real number (since the field of scalars is
R). This means that ¢ € C cannot be a scalar multiple of w. This is a contradiction,
because we assumed that every complex number could be written as a scalar multiple
of w. Therefore no such w exists.



