
MTH 342 Worksheet 2
Week 1 – 10/03/2019

Name: Answer Key Recitation time:

Let F be a field of scalars and let V be a set with defined addition and scalar multiplication. The
vector space axioms are
• (A0) Closed under addition: If u,v ∈ V , then u + v ∈ V .
1. (A1) Commutativity of addition: u + v = v + u for all u,v ∈ V .
2. (A2) Associativity of addition: (u + v) + w = u + (v + w) for all u,v,w ∈ V .
3. (A3) Zero vector: There exists a vector 0 ∈ V such that v + 0 = v for all v ∈ V .
4. (A4) Additive inverse: For every vector v ∈ V there exists a vector w ∈ V such that v+w = 0.
• (S0) Closed under scalar multiplication: If v ∈ V and α ∈ F , then αv ∈ V .
5. (S1) Multiplicative identity: 1v = v for all v ∈ V .
6. (S2) Associativity of scalar multiplication: (αβ)v = α(βv) for all v ∈ V and all scalars α, β.
7. (I1) Scalar distribution 1: α(u + v) = αu + αv for all u,v ∈ V and all scalars α.
8. (I2) Scalar distribution 2: (α+ β)v = αv + βv for all v ∈ V and all scalars α, β

1. Consider the set S = {(x, y) : x, y ∈ R and x 6= 0} ∪ {(0, 0)} with scalars in R and with
addition and scalar multiplication defined componentwise. This is not a vector space. Why
not? Which vector space axioms does S violate? Which does it satisfy?

Solution: First consider the axioms that S violates:

• S does not satisfy axiom A0 – it is not closed under addition. Let v = (1, 1) and
u = (−1, 1). Then u,v ∈ V since neither first coordinate is 0, but

u + v = (1, 1) + (−1, 1) = (0, 2) 6∈ V.

• I would say that axioms A1, A2, and I1 are violated (although this might be debatable).
This is because they each assume that axiom A0 is true. For example, consider again
v = (1, 0) and u = (−1, 1). Then the statement

u + v = v + u

of axiom A1 is meaningless, because u+v and v+u do not exist (as elements of V ). A
similar problem occurs when checking axioms A2 and I1.

All other axioms are satisfied:

• A3: Consider the element (0, 0) ∈ S. Then (0, 0) + (x, y) = (x, y) for any (x, y) ∈ S, so
0 = (0, 0) and axiom A3 is satisfied.

• A4: Let (x, y) ∈ S. If x = 0 then y = 0, and so (0, 0) ∈ S is the additive inverse of
(x, y). Otherwise x 6= 0, so −x 6= 0. Therefore (−x,−y) ∈ S. Now

(x, y) + (−x,−y) = (0 + 0) = 0

so (−x,−y) is the additive inverse of (x, y) and axiom A4 is satisfied.

• S0: Let α ∈ R and (x, y) ∈ S. There are three cases:

(i) α = 0: Then α(x, y) = (0, 0) ∈ S.

(ii) α 6= 0, x = 0: Since x = 0, we also have y = 0, so α(x, y) = (0, 0) ∈ S.

(iii) α 6= 0, x 6= 0: Then αx 6= 0, so α(x, y) = (αx, αy) ∈ S.

• S1: Let (x, y) ∈ S. Then 1(x, y) = ((1)x, (1)y) = (x, y).
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• S2: Let (x, y) ∈ S and α, β ∈ R. Then

(αβ)(x, y) = ((αβ)x, (αβ)y)

= (α(βx), α(βy)) by associativity of multiplication in R
= α(βx, βy)

= α(β(x, y)).

• I2: Let (x, y) ∈ S and α, β ∈ R. Then

(α+ β)(x, y) = ((α+ β)x, (α+ β)y)

= (αx+ βx, αy + βy) by distribution of in R
= (αx, αy) + (βx, βy)

= α(x, y) + β(x, y).

2. Let V be a vector space and let 0 be the zero vector in V . Below is a proof that α0 = 0 for
any scalar α. Fill in the blanks with the axiom used at each step:

proof. Let α be a scalar and let −(α0) be the additive inverse of α0. Then

0 = α0 + [−(α0)] A4: Additive inverse

= α(0 + 0) + [−(α0)] A3: Zero vector

= (α0 + α0) + [−(α0)] I1: Scalar distribution 1

= α0 + (α0 + [−(α0)]) A2: Associativity of addition

= α0 + 0 A4: Additive inverse

= α0. A4: Zero vector

3. Let V be a vector space. For any v ∈ V let −v denote the additive inverse of v. Prove that
−(−v) = v for any v ∈ V .
(Hint: consider v + [−v] + [−(−v)] and simplify in two different ways).

Solution: Let v ∈ V . Then(
v + [−v]

)
+ [−(−v)] = v +

(
[−v] + [−(−v)]

)
(by axiom A2)

↓
0 + [−(−v)] = v + 0 (by axiom A4)

↓
−(−v) = v (by axiom A3).
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4. Let n ≥ 0 be a fixed integer, let V be the set of polynomials of degree less than or equal to
n, and let F = R be the field of scalars. Assume that addition and scalar multiplication are
defined in the expected way. Prove that V satisfies axioms A0, A3, and S0 (this means that
V is a subspace of the vector space of all polynomials).

Solution: Remember that a polynomial f(x) has the form

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

for some integer n ≥ 0 and scalars a0, . . . , an. We say that f(x) is of degree k if ak 6= 0
and ai = 0 for all i > n (so k is the largest power of x occurring in f(x)). A polynomial of
degree less than or equal to k must have ai = 0 for all i > k, but may also have ak = 0.

Now we prove the three axioms:

• A0: Let f, g ∈ V . Then f and g can be written as

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

g(x) = b0 + b1x+ b2x
2 + · · ·+ bnx

n

where a0, . . . , an and b0, . . . , bn are scalars. Then

f(x) + g(x) = (a0 + a1x+ a2x
2 + · · ·+ anx

n) + (b0 + b1x+ b2x
2 + · · ·+ bnx

n)

= (a0 + b0) + (a1 + b1)x+ (a2 + b2)x
2 + · · ·+ (an + bn)xn

so f + g is a polynomial of degree less than or equal to n. Therefore f + g ∈ V .

• A3: Let z(x) = 0. Then z is a polynomial of degree 0, which is less than or equal to n,
so z ∈ V . It is easy to check that f + z = f for any polynomial f .

• S0: Let β ∈ R be a scalar and define f(x) as we did above. Then

αf(x) = β(a0 + a1x+ a2x
2 + · · ·+ anx

n)

= (βa0) + (βa1)x+ (βa2)x
2 + · · ·+ (βan)xn

so αf is a polynomial of degree less than or equal to n.
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5. The set V = C of complex numbers can be thought of as a vector space with scalars in R.
Addition and scalar multiplication are defined by standard addition and multiplication in C
(you should check that this is a vector space, but you do not need to write the proof here).

(a) Find two vectors u and v in V such that any element of V can be written as

αu + βv

for some scalars α, β ∈ R.

Solution: The simplest solution is u = 1 ∈ C = V and v = i ∈ C = V . We know
that any complex number z ∈ C = V can be written as the sum of a real part and an
imaginary part:

z = α+ βi.

for some α, β ∈ R. Then

z = α+ βi

= α(1) + β(i)

= αu + βv.

αu + βv is called a linear combination of u and v.

(b) Is it possible to find a single vector w ∈ V such that every vector of V can be written
as αw for some scalar α? If so, find such a w. If not, explain why or give a counter
example.

Solution: It is not possible to find such a w. To see why, suppose that such a w exists.
Then 1 ∈ C can be written as a scalar multiple of w:

αw = 1 for some α ∈ R.

Now multiply both sides by 1
α :

w =
1

α
for some α ∈ R.

This means that w = 1
α is a real number (since α is a real number). Since w is a

real number, any scalar multiple of w is also a real number (since the field of scalars is
R). This means that i ∈ C cannot be a scalar multiple of w. This is a contradiction,
because we assumed that every complex number could be written as a scalar multiple
of w. Therefore no such w exists.
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