\qquad
Let F be a field of scalars and let V be a set with defined addition and scalar multiplication. The vector space axioms are

- (A0) Closed under addition: If $\mathbf{u}, \mathbf{v} \in V$, then $\mathbf{u}+\mathbf{v} \in V$.

1. (A1) Commutativity of addition: $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$ for all $\mathbf{u}, \mathbf{v} \in V$.
2. (A2) Associativity of addition: $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$ for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$.
3. (A3) Zero vector: There exists a vector $\mathbf{0} \in V$ such that $\mathbf{v}+\mathbf{0}=\mathbf{v}$ for all $\mathbf{v} \in V$.
4. (A4) Additive inverse: For every vector $\mathbf{v} \in V$ there exists a vector $\mathbf{w} \in V$ such that $\mathbf{v}+\mathbf{w}=\mathbf{0}$.

- (S0) Closed under scalar multiplication: If $\mathbf{v} \in V$ and $\alpha \in F$, then $\alpha \mathbf{v} \in V$.

5. (S1) Multiplicative identity: $1 \mathbf{v}=\mathbf{v}$ for all $\mathbf{v} \in V$.
6. (S2) Associativity of scalar multiplication: $(\alpha \beta) \mathbf{v}=\alpha(\beta \mathbf{v})$ for all $\mathbf{v} \in V$ and all scalars α, β.
7. (I1) Scalar distribution 1: $\alpha(\mathbf{u}+\mathbf{v})=\alpha \mathbf{u}+\alpha \mathbf{v}$ for all $\mathbf{u}, \mathbf{v} \in V$ and all scalars α.
8. (I2) Scalar distribution 2: $(\alpha+\beta) \mathbf{v}=\alpha \mathbf{v}+\beta \mathbf{v}$ for all $\mathbf{v} \in V$ and all scalars α, β
9. Consider the set $S=\{(x, y): x, y \in \mathbb{R}$ and $x \neq 0\} \cup\{(0,0)\}$ with scalars in \mathbb{R} and with addition and scalar multiplication defined componentwise. This is not a vector space. Why not? Which vector space axioms does S violate? Which does it satisfy?

Solution: First consider the axioms that S violates:

- S does not satisfy axiom A0 - it is not closed under addition. Let $\mathbf{v}=(1,1)$ and $\mathbf{u}=(-1,1)$. Then $\mathbf{u}, \mathbf{v} \in V$ since neither first coordinate is 0 , but

$$
\mathbf{u}+\mathbf{v}=(1,1)+(-1,1)=(0,2) \notin V .
$$

- I would say that axioms A1, A2, and I1 are violated (although this might be debatable). This is because they each assume that axiom A0 is true. For example, consider again $\mathbf{v}=(1,0)$ and $\mathbf{u}=(-1,1)$. Then the statement

$$
\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}
$$

of axiom A1 is meaningless, because $\mathbf{u}+\mathbf{v}$ and $\mathbf{v}+\mathbf{u}$ do not exist (as elements of V). A similar problem occurs when checking axioms A2 and I1.

All other axioms are satisfied:

- A3: Consider the element $(0,0) \in S$. Then $(0,0)+(x, y)=(x, y)$ for any $(x, y) \in S$, so $\mathbf{0}=(0,0)$ and axiom A3 is satisfied.
- A4: Let $(x, y) \in S$. If $x=0$ then $y=0$, and so $(0,0) \in S$ is the additive inverse of (x, y). Otherwise $x \neq 0$, so $-x \neq 0$. Therefore $(-x,-y) \in S$. Now

$$
(x, y)+(-x,-y)=(0+0)=\mathbf{0}
$$

so $(-x,-y)$ is the additive inverse of (x, y) and axiom A 4 is satisfied.

- S0: Let $\alpha \in \mathbb{R}$ and $(x, y) \in S$. There are three cases:
(i) $\alpha=0$: Then $\alpha(x, y)=(0,0) \in S$.
(ii) $\alpha \neq 0, x=0$: Since $x=0$, we also have $y=0$, so $\alpha(x, y)=(0,0) \in S$.
(iii) $\alpha \neq 0, x \neq 0$: Then $\alpha x \neq 0$, so $\alpha(x, y)=(\alpha x, \alpha y) \in S$.
- S1: Let $(x, y) \in S$. Then $1(x, y)=((1) x,(1) y)=(x, y)$.
- S2: Let $(x, y) \in S$ and $\alpha, \beta \in \mathbb{R}$. Then

$$
\begin{aligned}
(\alpha \beta)(x, y) & =((\alpha \beta) x,(\alpha \beta) y) \\
& =(\alpha(\beta x), \alpha(\beta y)) \quad \text { by associativity of multiplication in } \mathbb{R} \\
& =\alpha(\beta x, \beta y) \\
& =\alpha(\beta(x, y)) .
\end{aligned}
$$

- I2: Let $(x, y) \in S$ and $\alpha, \beta \in \mathbb{R}$. Then

$$
\begin{aligned}
(\alpha+\beta)(x, y) & =((\alpha+\beta) x,(\alpha+\beta) y) \\
& =(\alpha x+\beta x, \alpha y+\beta y) \quad \text { by distribution of in } \mathbb{R} \\
& =(\alpha x, \alpha y)+(\beta x, \beta y) \\
& =\alpha(x, y)+\beta(x, y) .
\end{aligned}
$$

2. Let V be a vector space and let $\mathbf{0}$ be the zero vector in V. Below is a proof that $\alpha \mathbf{0}=\mathbf{0}$ for any scalar α. Fill in the blanks with the axiom used at each step: proof. Let α be a scalar and let $-(\alpha \mathbf{0})$ be the additive inverse of $\alpha \mathbf{0}$. Then

$$
\mathbf{0}=\alpha \mathbf{0}+[-(\alpha \mathbf{0})] \quad \underline{\text { A4: Additive inverse }}
$$

$$
\begin{aligned}
\mathbf{0} & =\alpha \mathbf{0}+[-(\alpha \mathbf{0})] \\
& =\alpha(\mathbf{0}+\mathbf{0})+[-(\alpha \mathbf{0})] \\
& =(\alpha \mathbf{0}+\alpha \mathbf{0})+[-(\alpha \mathbf{0})] \\
& =\alpha \mathbf{0}+(\alpha \mathbf{0}+[-(\alpha \mathbf{0})]) \\
& =\alpha \mathbf{0}+\mathbf{0} \\
& =\alpha \mathbf{0} .
\end{aligned}
$$

$$
=\alpha(\mathbf{0}+\mathbf{0})+[-(\alpha \mathbf{0})] \quad \text { A3: Zero vector }
$$

$$
=(\alpha \mathbf{0}+\alpha \mathbf{0})+[-(\alpha \mathbf{0})] \quad \underline{\text { I1: Scalar distribution } 1}
$$

$$
=\alpha \mathbf{0}+(\alpha \mathbf{0}+[-(\alpha \mathbf{0})]) \quad \underline{\text { A2: Associativity of addition }}
$$

$$
=\alpha \mathbf{0}+\mathbf{0} \quad \underline{\text { A4: Additive inverse }}
$$

$$
=\alpha \mathbf{0} . \quad \underline{\text { A4: Zero vector }}
$$

3. Let V be a vector space. For any $\mathbf{v} \in V$ let $-\mathbf{v}$ denote the additive inverse of \mathbf{v}. Prove that $-(-\mathbf{v})=\mathbf{v}$ for any $\mathbf{v} \in V$.
(Hint: consider $\mathbf{v}+[-\mathbf{v}]+[-(-\mathbf{v})]$ and simplify in two different ways).
Solution: Let $\mathbf{v} \in V$. Then

$$
\begin{aligned}
(\mathbf{v}+[-\mathbf{v}])+[-(-\mathbf{v})] & =\mathbf{v}+([-\mathbf{v}]+[-(-\mathbf{v})]) & & \text { (by axiom A2) } \\
& \downarrow & & \\
0+[-(-\mathbf{v})] & =\mathbf{v}+\mathbf{0} & & \text { (by axiom A4) } \\
& \downarrow & & \\
-(-\mathbf{v}) & =\mathbf{v} & & \text { (by axiom A3). }
\end{aligned}
$$

4. Let $n \geq 0$ be a fixed integer, let V be the set of polynomials of degree less than or equal to n, and let $F=\mathbb{R}$ be the field of scalars. Assume that addition and scalar multiplication are defined in the expected way. Prove that V satisfies axioms A0, A3, and S0 (this means that V is a subspace of the vector space of all polynomials).
Solution: Remember that a polynomial $f(x)$ has the form

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

for some integer $n \geq 0$ and scalars a_{0}, \ldots, a_{n}. We say that $\boldsymbol{f}(\boldsymbol{x})$ is of degree \boldsymbol{k} if $a_{k} \neq 0$ and $a_{i}=0$ for all $i>n$ (so k is the largest power of x occurring in $f(x)$). A polynomial of degree less than or equal to k must have $a_{i}=0$ for all $i>k$, but may also have $a_{k}=0$.
Now we prove the three axioms:

- A0: Let $f, g \in V$. Then f and g can be written as

$$
\begin{aligned}
& f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \\
& g(x)=b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{n} x^{n}
\end{aligned}
$$

where a_{0}, \ldots, a_{n} and b_{0}, \ldots, b_{n} are scalars. Then

$$
\begin{aligned}
f(x)+g(x) & =\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}\right)+\left(b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{n} x^{n}\right) \\
& =\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\left(a_{2}+b_{2}\right) x^{2}+\cdots+\left(a_{n}+b_{n}\right) x^{n}
\end{aligned}
$$

so $f+g$ is a polynomial of degree less than or equal to n. Therefore $f+g \in V$.

- A3: Let $z(x)=0$. Then z is a polynomial of degree 0 , which is less than or equal to n, so $z \in V$. It is easy to check that $f+z=f$ for any polynomial f.
- S0: Let $\beta \in \mathbb{R}$ be a scalar and define $f(x)$ as we did above. Then

$$
\begin{aligned}
\alpha f(x) & =\beta\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}\right) \\
& =\left(\beta a_{0}\right)+\left(\beta a_{1}\right) x+\left(\beta a_{2}\right) x^{2}+\cdots+\left(\beta a_{n}\right) x^{n}
\end{aligned}
$$

so αf is a polynomial of degree less than or equal to n.
5. The set $V=\mathbb{C}$ of complex numbers can be thought of as a vector space with scalars in \mathbb{R}. Addition and scalar multiplication are defined by standard addition and multiplication in \mathbb{C} (you should check that this is a vector space, but you do not need to write the proof here).
(a) Find two vectors \mathbf{u} and \mathbf{v} in V such that any element of V can be written as

$$
\alpha \mathbf{u}+\beta \mathbf{v}
$$

for some scalars $\alpha, \beta \in \mathbb{R}$.
Solution: The simplest solution is $\mathbf{u}=1 \in \mathbb{C}=V$ and $\mathbf{v}=i \in \mathbb{C}=V$. We know that any complex number $\mathbf{z} \in \mathbb{C}=V$ can be written as the sum of a real part and an imaginary part:

$$
\mathbf{z}=\alpha+\beta i
$$

for some $\alpha, \beta \in \mathbb{R}$. Then

$$
\begin{aligned}
\mathbf{z} & =\alpha+\beta i \\
& =\alpha(1)+\beta(i) \\
& =\alpha \mathbf{u}+\beta \mathbf{v} .
\end{aligned}
$$

$\alpha \mathbf{u}+\beta \mathbf{v}$ is called a linear combination of \mathbf{u} and \mathbf{v}.
(b) Is it possible to find a single vector $\mathbf{w} \in V$ such that every vector of V can be written as $\alpha \mathbf{w}$ for some scalar α ? If so, find such a \mathbf{w}. If not, explain why or give a counter example.
Solution: It is not possible to find such a w. To see why, suppose that such a w exists. Then $1 \in \mathbb{C}$ can be written as a scalar multiple of \mathbf{w} :

$$
\alpha \mathbf{w}=1 \quad \text { for some } \alpha \in \mathbb{R} .
$$

Now multiply both sides by $\frac{1}{\alpha}$:

$$
\mathbf{w}=\frac{1}{\alpha} \quad \text { for some } \alpha \in \mathbb{R} .
$$

This means that $\mathbf{w}=\frac{1}{\alpha}$ is a real number (since α is a real number). Since \mathbf{w} is a real number, any scalar multiple of \mathbf{w} is also a real number (since the field of scalars is $\mathbb{R})$. This means that $i \in \mathbb{C}$ cannot be a scalar multiple of \mathbf{w}. This is a contradiction, because we assumed that every complex number could be written as a scalar multiple of \mathbf{w}. Therefore no such \mathbf{w} exists.

