\qquad

1. Determine which of the following sets of functions are linearly independent. If a set is linearly dependent, find a nontrivial linear combination equal to 0 .
a.) $\left\{e^{x}, e^{x+2}\right\}$

Solution: Linearly dependent. Remember that

$$
e^{x+2}=e^{x} e^{2}=e^{2} \cdot e^{x}
$$

Therefore

$$
\begin{aligned}
-e^{2}\left(e^{x}\right)+\left(e^{x+2}\right) & =-e^{2} \cdot e^{x}+e^{2} \cdot e^{x} \\
& =0
\end{aligned}
$$

is a linear combination equal to $0\left(c_{1}=-e^{2}\right.$ and $\left.c_{2}=1\right)$.
b.) $\left\{\cos ^{2}(x), \sin ^{2}(x)\right\}$

Solution: Linearly independent. Let $c_{1}, c_{2} \in \mathbb{R}$ be constants and consider the equation

$$
c_{1} \cos ^{2}(x)+c_{2} \sin ^{2}(x)=0
$$

where this is true for all $x \in \mathbb{R}$. To prove that the functions are linearly independent, we must show that $c_{1}=c_{2}=0$.
If $x=0$ then the equation becomes

$$
c_{1}(1)+c_{2}(0)=0 \quad \rightarrow \quad c_{1}=0
$$

If $x=\pi / 2$ then the equation becomes

$$
c_{1}(0)+c_{2}(1)=0 \quad \rightarrow \quad c_{2}=0
$$

c.) $\left\{\cos ^{2}(x), \sin ^{2}(x), 5\right\}$

Solution: Linearly dependent. Remember the trigonometric identity

$$
\cos ^{2}(x)+\sin ^{2}(x)=1
$$

Subtract 1 from both sides to get

$$
\cos ^{2}(x)+\sin ^{2}(x)-1=0
$$

Now we just need to write -1 as a $\left(-\frac{1}{5}\right) 5$:

$$
\cos ^{2}(x)+\sin ^{2}(x)+\left(-\frac{1}{5}\right) 5=0
$$

$\left(c_{1}=1, c_{2}=1\right.$, and $\left.c_{3}=-\frac{1}{5}\right)$.
2. Let U be the subspace of \mathbb{R}^{3} defined by

$$
U=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{3}=x_{1}+x_{2}\right\} .
$$

Find a basis for U.
Solution: The vectors

$$
\begin{aligned}
& \mathbf{v}_{1}=(1,0,1) \\
& \mathbf{v}_{2}=(0,1,1)
\end{aligned}
$$

form a basis for U. To prove this, we need to prove two facts:
(i) $\mathbf{v}_{1}, \mathbf{v}_{2} \in U$ and every element of U can be written as a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2} proof. It is easy to see that $\mathbf{v}_{1}, \mathbf{v}_{2} \in U$. Now any element of U can be written as

$$
\begin{aligned}
\left(x_{1}, x_{2}, x_{1}+x_{2}\right) & =\left(x_{1}, 0, x_{1}\right)+\left(0, x_{2}, x_{2}\right) \\
& =x_{1}(1,0,1)+x_{2}(0,1,1)
\end{aligned}
$$

for some $x_{1}, x_{2} \in \mathbb{R}$, which is a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2}
(ii) \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent. proof. Consider the equation

$$
\begin{aligned}
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2} & =\mathbf{0} \\
& \downarrow \\
c_{1}(1,0,1)+c_{2}(0,1,1) & =(0,0,0) \\
& \downarrow \\
\left(c_{1}, 0, c_{1}\right)+\left(0, c_{2}, c_{2}\right) & =(0,0,0) \\
& \downarrow \\
\left(c_{1}, c_{2}, c_{1}+c_{2}\right) & =(0,0,0)
\end{aligned}
$$

The equation in the first coordinate shows that

$$
c_{1}=0 .
$$

Similarly, the equation in the second coordinate shows that

$$
c_{2}=0 .
$$

Therefore \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent.
3. Let V and W be vector spaces over a field F and let $f: V \rightarrow W$ be a linear map. Prove that the set

$$
\{\mathbf{v} \in V: f(\mathbf{v})=\mathbf{0}\}
$$

is a subspace of V (this is called the null space of \boldsymbol{f}).
Solution: Call this set N. To show that N is a subspace of V we need to show that it is closed under addition and scalar multiplication and that it contains $\mathbf{0}$.
(i) Closed under addition: Suppose $\mathbf{v}, \mathbf{w} \in N$. Then

$$
\begin{aligned}
f(\mathbf{v}+\mathbf{w}) & =f(\mathbf{v})+f(\mathbf{w}) & & \text { (since } f \text { is linear) } \\
& =\mathbf{0}+\mathbf{0} & & (\text { since } \mathbf{v}, \mathbf{w} \in N) \\
& =\mathbf{0} & &
\end{aligned}
$$

so $\mathbf{v}+\mathbf{w} \in N$.
(ii) Closed under scalar multiplication: Suppose $\mathbf{v} \in N$ and $\alpha \in F$. Then

$$
\begin{aligned}
f(\alpha \mathbf{v}) & =\alpha f(\mathbf{v}) & & \text { (since } f \text { is linear) } \\
& =\alpha \mathbf{0} & & (\text { since } \mathbf{v} \in N) \\
& =\mathbf{0}, & &
\end{aligned}
$$

so $\alpha \mathbf{v} \in N$.
(iii) N contains the zero vector:

$$
\begin{aligned}
f(\mathbf{0}) & =f(\mathbf{0}+\mathbf{0}) \\
& =f(\mathbf{0})+f(\mathbf{0}) .
\end{aligned}
$$

Subtracting $f(\mathbf{0})$ from both sides we get

$$
\mathbf{0}=f(\mathbf{0})
$$

so $\mathbf{0} \in N$.
Therefore N is a subspace of V.
4. Let V be a vector space and suppose $\mathbf{v}_{1}, \mathbf{v}_{2} \in V$ are linearly independent. Let $\mathbf{w}_{1}, \mathbf{w}_{2} \in V$ such that $\mathbf{w}_{1}+\mathbf{w}_{2}=\mathbf{v}_{1}$ and $\mathbf{w}_{1}-\mathbf{w}_{2}=\mathbf{v}_{2}$. Prove that \mathbf{w}_{1} and \mathbf{w}_{2} are linearly independent.
Solution: This problem may have been a bit too difficult for this worksheet. Here's one way to prove this:
First, we can solve for \mathbf{w}_{1} and \mathbf{w}_{2} in terms of \mathbf{v}_{1} and \mathbf{v}_{2}. Consider the given equations

$$
\begin{aligned}
& \mathbf{w}_{1}+\mathbf{w}_{2}=\mathbf{v}_{1} \\
& \mathbf{w}_{1}-\mathbf{w}_{2}=\mathbf{v}_{2}
\end{aligned}
$$

Adding these equations gives

$$
2 \mathbf{w}_{1}=\mathbf{v}_{1}+\mathbf{v}_{2} \quad \rightarrow \quad \mathbf{w}_{1}=\frac{1}{2} \mathbf{v}_{1}+\frac{1}{2} \mathbf{v}_{2} .
$$

Similarly, subtracting the second equation from the first gives

$$
2 \mathbf{w}_{2}=\mathbf{v}_{1}-\mathbf{v}_{2} \quad \rightarrow \quad \mathbf{w}_{2}=\frac{1}{2} \mathbf{v}_{1}-\frac{1}{2} \mathbf{v}_{2} .
$$

Now we can show that \mathbf{w}_{1} and \mathbf{w}_{2} are linearly independent.
Let c_{1} and c_{2} be constants and consider the equation

$$
c_{1} \mathbf{w}_{2}+c_{2} \mathbf{w}_{2}=0
$$

We want to show that $c_{1}=c_{2}=0$.

$$
\begin{aligned}
c_{1} \mathbf{w}_{2}+c_{2} \mathbf{w}_{2} & =0 \\
& \downarrow \\
c_{1}\left(\frac{1}{2} \mathbf{v}_{1}+\frac{1}{2} \mathbf{v}_{2}\right)+c_{2}\left(\frac{1}{2} \mathbf{v}_{1}-\frac{1}{2} \mathbf{v}_{2}\right) & =0 \\
& \downarrow \\
\frac{1}{2} c_{1} \mathbf{v}_{1}+\frac{1}{2} c_{1} \mathbf{v}_{2}+\frac{1}{2} c_{2} \mathbf{v}_{1}-\frac{1}{2} c_{2} \mathbf{v}_{2} & =0 \\
& \downarrow \\
\left(\frac{1}{2} c_{1}+\frac{1}{2} c_{2}\right) \mathbf{v}_{1}+\left(\frac{1}{2} c_{1}-\frac{1}{2} c_{2}\right) \mathbf{v}_{2} & =0
\end{aligned}
$$

Now since \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent we must have

$$
\begin{aligned}
& \frac{1}{2} c_{1}+\frac{1}{2} c_{2}=0 \\
& \frac{1}{2} c_{1}-\frac{1}{2} c_{2}=0
\end{aligned}
$$

This system of equations can be solved easily. Add the top equation to the bottom equation to get

$$
c_{1}=0
$$

Then the first equation gives

$$
\frac{1}{2} c_{1}+\frac{1}{2} c_{2}=0 \quad \rightarrow \quad 0+\frac{1}{2} c_{2}=0 \quad \rightarrow \quad c_{2}=0
$$

5. Determine (with proof) which of the following maps are linear.
a.) $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$.

Solution: \boldsymbol{f} is not linear. Notice that $f(1)=1$ and $f(2)=4$, but

$$
f(1+2)=f(3)=9 \neq 5=f(1)+f(2)
$$

b.) $A: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $A\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$.

Solution: \boldsymbol{A} is linear. Let $\left(x_{1}, x_{2}\right),\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2}$ and let $\alpha \in \mathbb{R}$. Then

$$
\begin{aligned}
A\left(\left(x_{1}, x_{1}\right)+\left(z_{1}, z_{2}\right)\right) & =A\left(x_{1}+z_{1}, x_{2}+z_{2}\right) \\
& =\left(x_{1}+z_{1}\right)+\left(x_{2}+z_{2}\right) \\
& =\left(x_{1}+x_{2}\right)+\left(z_{1}+z_{2}\right) \\
& =A\left(x_{1}, x_{2}\right)+A\left(z_{1}, z_{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
A\left(\alpha\left(x_{1}, x_{1}\right)\right) & =A\left(\alpha x_{1}, \alpha x_{2}\right) \\
& =\alpha x_{1}+\alpha x_{2} \\
& =\alpha\left(x_{1}+x_{2}\right) \\
& =\alpha A\left(x_{1}, x_{2}\right)
\end{aligned}
$$

so A is linear.

