Name: Answer Key

Recitation time:

- 1. Determine which of the following sets of functions are linearly independent. If a set is linearly dependent, find a nontrivial linear combination equal to 0.
 - **a.)** $\{e^x, e^{x+2}\}$

Solution: Linearly dependent. Remember that

$$e^{x+2} = e^x e^2 = e^2 \cdot e^x.$$

Therefore

$$\boxed{-e^2(e^x) + (e^{x+2})} = -e^2 \cdot e^x + e^2 \cdot e^x = 0$$

is a linear combination equal to 0 $(c_1 = -e^2 \text{ and } c_2 = 1)$.

b.) $\{\cos^2(x), \sin^2(x)\}$

Solution: Linearly independent. Let $c_1, c_2 \in \mathbb{R}$ be constants and consider the equation

$$c_1 \cos^2(x) + c_2 \sin^2(x) = 0$$

where this is true for all $x \in \mathbb{R}$. To prove that the functions are linearly independent, we must show that $c_1 = c_2 = 0$.

If x = 0 then the equation becomes

$$c_1(1) + c_2(0) = 0 \quad \to \quad c_1 = 0.$$

If $x = \pi/2$ then the equation becomes

$$c_1(0) + c_2(1) = 0 \quad \to \quad c_2 = 0.$$

c.) $\{\cos^2(x), \sin^2(x), 5\}$

Solution: Linearly dependent. Remember the trigonometric identity

$$\cos^2(x) + \sin^2(x) = 1.$$

Subtract 1 from both sides to get

$$\cos^2(x) + \sin^2(x) - 1 = 0.$$

Now we just need to write -1 as a $\left(-\frac{1}{5}\right)5$:

$$\cos^2(x) + \sin^2(x) + (-\frac{1}{5})5 = 0$$

 $(c_1 = 1, c_2 = 1, \text{ and } c_3 = -\frac{1}{5}).$

2. Let U be the subspace of \mathbb{R}^3 defined by

$$U = \{ (x_1, x_2, x_3) \in \mathbb{R}^3 : x_3 = x_1 + x_2 \}.$$

Find a basis for U.

Solution: The vectors

$$\mathbf{v}_1 = (1, 0, 1)$$

 $\mathbf{v}_2 = (0, 1, 1)$

form a basis for U. To prove this, we need to prove two facts:

(i) $\mathbf{v}_1, \mathbf{v}_2 \in U$ and every element of U can be written as a linear combination of \mathbf{v}_1 and \mathbf{v}_2 proof. It is easy to see that $\mathbf{v}_1, \mathbf{v}_2 \in U$. Now any element of U can be written as

$$(x_1, x_2, x_1 + x_2) = (x_1, 0, x_1) + (0, x_2, x_2)$$
$$= x_1(1, 0, 1) + x_2(0, 1, 1)$$

for some $x_1, x_2 \in \mathbb{R}$, which is a linear combination of \mathbf{v}_1 and \mathbf{v}_2

(ii) \mathbf{v}_1 and \mathbf{v}_2 are linearly independent. proof. Consider the equation

$$c_{1}\mathbf{v}_{1} + c_{2}\mathbf{v}_{2} = \mathbf{0}$$

$$\downarrow$$

$$c_{1}(1, 0, 1) + c_{2}(0, 1, 1) = (0, 0, 0)$$

$$\downarrow$$

$$(c_{1}, 0, c_{1}) + (0, c_{2}, c_{2}) = (0, 0, 0)$$

$$\downarrow$$

$$(c_{1}, c_{2}, c_{1} + c_{2}) = (0, 0, 0)$$

The equation in the first coordinate shows that

 $c_1 = 0.$

Similarly, the equation in the second coordinate shows that

 $c_2 = 0.$

Therefore \mathbf{v}_1 and \mathbf{v}_2 are linearly independent.

3. Let V and W be vector spaces over a field F and let $f: V \to W$ be a linear map. Prove that the set

$$\{\mathbf{v}\in V:f(\mathbf{v})=\mathbf{0}\}$$

is a subspace of V (this is called the **null space of** f).

Solution: Call this set N. To show that N is a subspace of V we need to show that it is closed under addition and scalar multiplication and that it contains **0**.

(i) Closed under addition: Suppose $\mathbf{v}, \mathbf{w} \in N$. Then

$$f(\mathbf{v} + \mathbf{w}) = f(\mathbf{v}) + f(\mathbf{w}) \qquad (\text{since } f \text{ is linear})$$
$$= \mathbf{0} + \mathbf{0} \qquad (\text{since } \mathbf{v}, \mathbf{w} \in N)$$
$$= \mathbf{0},$$

so $\mathbf{v} + \mathbf{w} \in N$.

(ii) Closed under scalar multiplication: Suppose $\mathbf{v} \in N$ and $\alpha \in F$. Then

$$f(\alpha \mathbf{v}) = \alpha f(\mathbf{v}) \qquad (\text{since } f \text{ is linear})$$
$$= \alpha \mathbf{0} \qquad (\text{since } \mathbf{v} \in N)$$
$$= \mathbf{0},$$

so $\alpha \mathbf{v} \in N$.

(iii) N contains the zero vector:

$$f(\mathbf{0}) = f(\mathbf{0} + \mathbf{0})$$

= $f(\mathbf{0}) + f(\mathbf{0})$.

Subtracting $f(\mathbf{0})$ from both sides we get

$$\mathbf{0} = f(\mathbf{0})$$

so $\mathbf{0} \in N$.

Therefore N is a subspace of V.

4. Let V be a vector space and suppose $\mathbf{v}_1, \mathbf{v}_2 \in V$ are linearly independent. Let $\mathbf{w}_1, \mathbf{w}_2 \in V$ such that $\mathbf{w}_1 + \mathbf{w}_2 = \mathbf{v}_1$ and $\mathbf{w}_1 - \mathbf{w}_2 = \mathbf{v}_2$. Prove that \mathbf{w}_1 and \mathbf{w}_2 are linearly independent. Solution: This problem may have been a bit too difficult for this worksheet. Here's one way to prove this:

First, we can solve for \mathbf{w}_1 and \mathbf{w}_2 in terms of \mathbf{v}_1 and \mathbf{v}_2 . Consider the given equations

$$\mathbf{w}_1 + \mathbf{w}_2 = \mathbf{v}_1$$
$$\mathbf{w}_1 - \mathbf{w}_2 = \mathbf{v}_2$$

Adding these equations gives

$$2\mathbf{w}_1 = \mathbf{v}_1 + \mathbf{v}_2 \qquad \rightarrow \qquad \mathbf{w}_1 = \frac{1}{2}\mathbf{v}_1 + \frac{1}{2}\mathbf{v}_2.$$

Similarly, subtracting the second equation from the first gives

$$2\mathbf{w}_2 = \mathbf{v}_1 - \mathbf{v}_2 \qquad \rightarrow \qquad \mathbf{w}_2 = \frac{1}{2}\mathbf{v}_1 - \frac{1}{2}\mathbf{v}_2.$$

Now we can show that \mathbf{w}_1 and \mathbf{w}_2 are linearly independent.

Let c_1 and c_2 be constants and consider the equation

$$c_1\mathbf{w}_2 + c_2\mathbf{w}_2 = 0$$

We want to show that $c_1 = c_2 = 0$.

$$c_{1}\mathbf{w}_{2} + c_{2}\mathbf{w}_{2} = 0$$

$$\downarrow$$

$$c_{1}\left(\frac{1}{2}\mathbf{v}_{1} + \frac{1}{2}\mathbf{v}_{2}\right) + c_{2}\left(\frac{1}{2}\mathbf{v}_{1} - \frac{1}{2}\mathbf{v}_{2}\right) = 0$$

$$\downarrow$$

$$\frac{1}{2}c_{1}\mathbf{v}_{1} + \frac{1}{2}c_{1}\mathbf{v}_{2} + \frac{1}{2}c_{2}\mathbf{v}_{1} - \frac{1}{2}c_{2}\mathbf{v}_{2} = 0$$

$$\downarrow$$

$$\left(\frac{1}{2}c_{1} + \frac{1}{2}c_{2}\right)\mathbf{v}_{1} + \left(\frac{1}{2}c_{1} - \frac{1}{2}c_{2}\right)\mathbf{v}_{2} = 0$$

Now since \mathbf{v}_1 and \mathbf{v}_2 are linearly independent we must have

$$\frac{\frac{1}{2}c_1 + \frac{1}{2}c_2 = 0}{\frac{1}{2}c_1 - \frac{1}{2}c_2 = 0}$$

This system of equations can be solved easily. Add the top equation to the bottom equation to get

$$c_1 = 0$$

Then the first equation gives

$$\frac{1}{2}c_1 + \frac{1}{2}c_2 = 0 \quad \to \quad 0 + \frac{1}{2}c_2 = 0 \quad \to \quad c_2 = 0.$$

5. Determine (with proof) which of the following maps are linear.

a.) $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$. Solution: f is not linear. Notice that f(1) = 1 and f(2) = 4, but

$$f(1+2) = f(3) = 9 \neq 5 = f(1) + f(2).$$

b.) $A: \mathbb{R}^2 \to \mathbb{R}$ defined by $A(x_1, x_2) = x_1 + x_2$. Solution: A is linear. Let $(x_1, x_2), (z_1, z_2) \in \mathbb{R}^2$ and let $\alpha \in \mathbb{R}$. Then

$$A((x_1, x_1) + (z_1, z_2)) = A(x_1 + z_1, x_2 + z_2)$$

= $(x_1 + z_1) + (x_2 + z_2)$
= $(x_1 + x_2) + (z_1 + z_2)$
= $A(x_1, x_2) + A(z_1, z_2)$

and

$$A(\alpha(x_1, x_1)) = A(\alpha x_1, \alpha x_2)$$
$$= \alpha x_1 + \alpha x_2$$
$$= \alpha(x_1 + x_2)$$
$$= \alpha A(x_1, x_2)$$

so A is linear.