Name: Answer Key

Recitation time: _

1. Let

$$V = \{ (x_1, x_2, x_3) \in \mathbb{R}^3 : x_3 = x_1 - x_2 \}.$$

a.) Find a basis B_1 for V. What is the dimension of V? Solution: We can rewrite V as

$$V = \{ (x_1, x_2, x_3) \in \mathbb{R}^3 : x_3 = x_1 - x_2 \}$$

= $\{ (x_1, x_2, x_1 - x_2) : x_1, x_2, x_3 \in \mathbb{R} \}$
= $\{ (x_1, 0, x_1) + (0, x_2, -x_2) : x_1, x_2, x_3 \in \mathbb{R} \}$
= $\{ x_1(1, 0, 1) + x_2(0, 1, -1) : x_1, x_2, x_3 \in \mathbb{R} \}$

So every element of V can be written as a linear combination of $\mathbf{v}_1 = (1, 0, 1)$ and $\mathbf{v}_2 = (0, 1, -1)$. Notice that \mathbf{v}_1 and \mathbf{v}_2 each satisfy the condition $x_3 = x_1 - x_2$, so $\mathbf{v}_1, \mathbf{v}_2 \in V$. These two facts together show that

$$V = \operatorname{Span}(\{\mathbf{v}_1, \mathbf{v}_2\}).$$

To show $B_1 = {\mathbf{v}_1, \mathbf{v}_2}$ is a basis for V, we must show that they are linearly independent. Let $c_1, c_2 \in \mathbb{R}$ and consider the equation

$$c_{1}\mathbf{v}_{1} + c_{2}\mathbf{v}_{2} = \mathbf{0}$$

$$\downarrow$$

$$c_{1}(1,0,1) + c_{2}(0,1,-1) = (0,0,0)$$

$$\downarrow$$

$$(c_{1},c_{2},c_{1} - c_{2}) = (0,0,0)$$

In this last equation the first coordinate gives $c_1 = 0$ and the second coordinate gives $c_2 = 0$. Therefore B_1 is linearly independent. Since B_1 has exactly two elements, the dimension of V is 2.

b.) Define $f: V \to \mathbb{R}^2$ by

$$f(x_1, x_2, x_3) = (x_2, x_1 + x_3).$$

Prove that f is a linear map. Solution: Let $\mathbf{v}, \mathbf{w} \in V$ and $\alpha \in \mathbb{R}$

f

• We want to show $f(\mathbf{v} + \mathbf{w}) = f(\mathbf{v}) + f(\mathbf{w})$. Let $(x_1, x_2, x_3), (y_1, y_2, y_3) \in V$. Then

$$\begin{aligned} ((x_1, x_2, x_3) + (y_1, y_2, y_3)) &= f(x_1 + y_1, x_2 + y_2, x_3 + y_3) \\ &= (x_2 + y_2, x_1 + y_1 + x_3 + y_3) \\ &= (x_2, x_1 + x_3) + (y_2, y_1 + y_3) \\ &= f(x_1, x_2, x_3) + f(y_1, y_2, y_3). \end{aligned}$$

• We want to show $f(\alpha \mathbf{v}) = \alpha f(\mathbf{v})$. Let $(x_1, x_2, x_3) \in V$ and $\alpha \in \mathbb{R}$ Then

$$f(\alpha(x_1, x_2, x_3)) = f(\alpha x_1, \alpha x_2, \alpha x_3) = (\alpha x_2, \alpha x_1 + \alpha x_3) = \alpha(x_2, x_1 + x_3) = \alpha f(x_1, x_2, x_3).$$

c.) Let B_2 be the standard basis for \mathbb{R}^2 . Find the matrix representation $[f]_{B_2,B_1}$ of f as defined in part (b).

Solution: The standard basis for \mathbb{R}^2 is

$$B_2 = \{\mathbf{e}_1, \mathbf{e}_2\} = \{(1, 0), (0, 1)\}.$$

From part (b) we had a basis for V,

$$B_1 = \{\mathbf{v}_1, \mathbf{v}_2\} = \{(1, 0, 1), (0, 1, -1)\}\$$

To find the columns of $[f]_{B_2,B_1}$ we must calculate $f(\mathbf{v}_1)$ and $f(\mathbf{v}_2)$ and write the results in terms of \mathbf{e}_1 and \mathbf{e}_2 .

$$f(\mathbf{v}_1) = f(1, 0, 1)$$

= (0, 2)
= 0(1, 0) + 2(0, 1)
= 0 \mathbf{e}_1 + 2 \mathbf{e}_2

so the first column of $[f]_{B_2,B_1}$ is

$$\begin{bmatrix} 0 \\ 2 \end{bmatrix}.$$

$$f(\mathbf{v}_2) = f(0, 1, -1)$$

= (1, -1)
= (1, 0) - 1(0, 1)
= 1 \mathbf{e}_1 + (-1) \mathbf{e}_2

so the second column of $[f]_{B_2,B_1}$ is

Therefore

$$[f]_{B_2,B_1} = \begin{bmatrix} 0 & 1\\ 2 & -1 \end{bmatrix}.$$

 $\begin{bmatrix} 1\\ -1 \end{bmatrix}$.

Your answer may be different, depending on your

2. Define $h : \mathbb{R} \to \mathbb{R}$ by h(x) = x + 1. Is h a linear map? Verify your answer.

Solution: h is **not** a linear map. To prove this, we need a counter show that it is not additive or that it is not multiplicative. To see that h is not additive, compare h(0+0) and h(0)+h(0):

$$h(0+0) = h(0) = 1 \neq 2 = h(0) + h(0)$$

so h does **not** satisfy $h(\mathbf{v} + \mathbf{w}) = f(\mathbf{v}) + f(\mathbf{w})$ for all $\mathbf{v}, \mathbf{w} \in V$

- **3.** Let \mathbb{P}_n be the real vector space of polynomials of degree *n* or less.
 - **a.)** Check that the differentiation map $\frac{d}{dx} : \mathbb{P}_2 \to \mathbb{P}_1$ is linear. Solution: You don't need to show any work here. Just recall that

$$\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]$$

and

$$\frac{d}{dx}[\alpha f(x)] = \alpha \frac{d}{dx}[f(x)]$$

for all differentiable functions $f, g \colon \mathbb{R} \to \mathbb{R}$ and all $\alpha \in \mathbb{R}$.

b.) Let $B_1 = \{1, x, x^2\}$ and $B_2 = \{1, x\}$. Then B_1 is a basis for \mathbb{P}_2 , and B_2 is a basis for \mathbb{P}_1 . Find the matrix representation $[\frac{d}{dx}]_{B_2,B_1}$ of the differentiation map. **Solution:** To find the columns of $[f]_{B_2,B_1}$ we must apply $\frac{d}{dx}$ to each element of B_1 and write the results in terms of the elements of B_2 .

$$\frac{d}{dx}[1] = 0$$
$$= 0(1) + 0(x)$$

so the first column of $\left[\frac{d}{dx}\right]_{B_2,B_1}$ is

$$\frac{d}{dx}[x] = 1$$
$$= 1(1) + 0(x)$$

 $\begin{bmatrix} 0\\ 0 \end{bmatrix}$.

so the second column of $\left[\frac{d}{dx}\right]_{B_2,B_1}$ is

$$\begin{bmatrix} 0 \end{bmatrix}^{\cdot}$$
$$\frac{d}{dx}[x^2] = 2x$$

[1]

$$= 0(1) + 2(x)$$

so the third column of $\left[\frac{d}{dx}\right]_{B_2,B_1}$ is

$$\begin{bmatrix} 0\\ 2 \end{bmatrix}$$
.

Therefore

$$\begin{bmatrix} \frac{d}{dx} \end{bmatrix}_{B_2, B_1} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

4. This problem requires you to think geometrically. Let $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that reflects each vector across the line y = -x. Find the standard matrix of T.

Solution: By "standard matrix" we mean the matrix $[T]_{B_2,B_1}$ where $B_2 = B_1 = \{\mathbf{e}_1, \mathbf{e}_2\}$ are both the standard basis for \mathbb{R}^2 .

It may help to visualize the transformations $T(\mathbf{e}_1)$ and $T(\mathbf{e}_2)$.

$$T(\mathbf{e}_1) = \begin{bmatrix} 0\\ -1 \end{bmatrix} = -\mathbf{e}_2 = 0\mathbf{e}_1 + (-1)\mathbf{e}_2,$$
$$T(\mathbf{e}_2) = \begin{bmatrix} -1\\ 0 \end{bmatrix} = -\mathbf{e}_1 = (-1)\mathbf{e}_1 + 0\mathbf{e}_2$$

The matrix for T is

$$\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$