\qquad

1. Let

$$
V=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{3}=x_{1}-x_{2}\right\} .
$$

a.) Find a basis B_{1} for V. What is the dimension of V ?

Solution: We can rewrite V as

$$
\begin{aligned}
V & =\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{3}=x_{1}-x_{2}\right\} \\
& =\left\{\left(x_{1}, x_{2}, x_{1}-x_{2}\right): x_{1}, x_{2}, x_{3} \in \mathbb{R}\right\} \\
& =\left\{\left(x_{1}, 0, x_{1}\right)+\left(0, x_{2},-x_{2}\right): x_{1}, x_{2}, x_{3} \in \mathbb{R}\right\} \\
& =\left\{x_{1}(1,0,1)+x_{2}(0,1,-1): x_{1}, x_{2}, x_{3} \in \mathbb{R}\right\}
\end{aligned}
$$

So every element of V can be written as a linear combination of $\mathbf{v}_{1}=(1,0,1)$ and $\mathbf{v}_{2}=(0,1,-1)$. Notice that \mathbf{v}_{1} and \mathbf{v}_{2} each satisfy the condition $x_{3}=x_{1}-x_{2}$, so $\mathbf{v}_{1}, \mathbf{v}_{2} \in V$. These two facts together show that

$$
V=\operatorname{Span}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}\right) .
$$

To show $B_{1}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a basis for V, we must show that they are linearly independent. Let $c_{1}, c_{2} \in \mathbb{R}$ and consider the equation

$$
\begin{aligned}
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2} & =\mathbf{0} \\
& \downarrow \\
c_{1}(1,0,1)+c_{2}(0,1,-1) & =(0,0,0) \\
& \downarrow \\
\left(c_{1}, c_{2}, c_{1}-c_{2}\right) & =(0,0,0)
\end{aligned}
$$

In this last equation the first coordinate gives $c_{1}=0$ and the second coordinate gives $c_{2}=0$. Therefore B_{1} is linearly independent. Since B_{1} has exactly two elements, the dimension of V is 2 .
b.) Define $f: V \rightarrow \mathbb{R}^{2}$ by

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{2}, x_{1}+x_{3}\right) .
$$

Prove that f is a linear map.
Solution: Let $\mathbf{v}, \mathbf{w} \in V$ and $\alpha \in \mathbb{R}$

- We want to show $f(\mathbf{v}+\mathbf{w})=f(\mathbf{v})+f(\mathbf{w})$.

Let $\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right) \in V$. Then

$$
\begin{aligned}
f\left(\left(x_{1}, x_{2}, x_{3}\right)+\left(y_{1}, y_{2}, y_{3}\right)\right) & =f\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}\right) \\
& =\left(x_{2}+y_{2}, x_{1}+y_{1}+x_{3}+y_{3}\right) \\
& =\left(x_{2}, x_{1}+x_{3}\right)+\left(y_{2}, y_{1}+y_{3}\right) \\
& =f\left(x_{1}, x_{2}, x_{3}\right)+f\left(y_{1}, y_{2}, y_{3}\right) .
\end{aligned}
$$

- We want to show $f(\alpha \mathbf{v})=\alpha f(\mathbf{v})$.

Let $\left(x_{1}, x_{2}, x_{3}\right) \in V$ and $\alpha \in \mathbb{R}$ Then

$$
\begin{aligned}
f\left(\alpha\left(x_{1}, x_{2}, x_{3}\right)\right) & =f\left(\alpha x_{1}, \alpha x_{2}, \alpha x_{3}\right) \\
& =\left(\alpha x_{2}, \alpha x_{1}+\alpha x_{3}\right) \\
& =\alpha\left(x_{2}, x_{1}+x_{3}\right) \\
& =\alpha f\left(x_{1}, x_{2}, x_{3}\right) .
\end{aligned}
$$

c.) Let B_{2} be the standard basis for \mathbb{R}^{2}. Find the matrix representation $[f]_{B_{2}, B_{1}}$ of f as defined in part (b).
Solution: The standard basis for \mathbb{R}^{2} is

$$
B_{2}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}=\{(1,0),(0,1)\} .
$$

From part (b) we had a basis for V,

$$
B_{1}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}=\{(1,0,1),(0,1,-1)\}
$$

To find the columns of $[f]_{B_{2}, B_{1}}$ we must calculate $f\left(\mathbf{v}_{1}\right)$ and $f\left(\mathbf{v}_{2}\right)$ and write the results in terms of \mathbf{e}_{1} and \mathbf{e}_{2}.

$$
\begin{aligned}
f\left(\mathbf{v}_{1}\right) & =f(1,0,1) \\
& =(0,2) \\
& =0(1,0)+2(0,1) \\
& =0 \mathbf{e}_{1}+2 \mathbf{e}_{2}
\end{aligned}
$$

so the first column of $[f]_{B_{2}, B_{1}}$ is

$$
\begin{aligned}
& {\left[\begin{array}{l}
0 \\
2
\end{array}\right] } \\
f\left(\mathbf{v}_{2}\right) & =f(0,1,-1) \\
& =(1,-1) \\
& =(1,0)-1(0,1) \\
& =1 \mathbf{e}_{1}+(-1) \mathbf{e}_{2}
\end{aligned}
$$

so the second column of $[f]_{B_{2}, B_{1}}$ is

$$
\left[\begin{array}{r}
1 \\
-1
\end{array}\right] .
$$

Therefore

$$
[f]_{B_{2}, B_{1}}=\left[\begin{array}{rr}
0 & 1 \\
2 & -1
\end{array}\right]
$$

Your answer may be different, depending on your
2. Define $h: \mathbb{R} \rightarrow \mathbb{R}$ by $h(x)=x+1$. Is h a linear map? Verify your answer.

Solution: h is not a linear map. To prove this, we need a counter show that it is not additive or that it is not multiplicative. To see that h is not additive, compare $h(0+0)$ and $h(0)+h(0)$:

$$
h(0+0)=h(0)=1 \neq 2=h(0)+h(0)
$$

so h does not satisfy $h(\mathbf{v}+\mathbf{w})=f(\mathbf{v})+f(\mathbf{w})$ for all $\mathbf{v}, \mathbf{w} \in V$
3. Let \mathbb{P}_{n} be the real vector space of polynomials of degree n or less.
a.) Check that the differentiation map $\frac{d}{d x}: \mathbb{P}_{2} \rightarrow \mathbb{P}_{1}$ is linear.

Solution: You don't need to show any work here. Just recall that

$$
\frac{d}{d x}[f(x)+g(x)]=\frac{d}{d x}[f(x)]+\frac{d}{d x}[g(x)]
$$

and

$$
\frac{d}{d x}[\alpha f(x)]=\alpha \frac{d}{d x}[f(x)]
$$

for all differentiable functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ and all $\alpha \in \mathbb{R}$.
b.) Let $B_{1}=\left\{1, x, x^{2}\right\}$ and $B_{2}=\{1, x\}$. Then B_{1} is a basis for \mathbb{P}_{2}, and B_{2} is a basis for \mathbb{P}_{1}. Find the matrix representation $\left[\frac{d}{d x}\right]_{B_{2}, B_{1}}$ of the differentiation map.
Solution: To find the columns of $[f]_{B_{2}, B_{1}}$ we must apply $\frac{d}{d x}$ to each element of B_{1} and write the results in terms of the elements of B_{2}.

$$
\begin{aligned}
\frac{d}{d x}[1] & =0 \\
& =0(1)+0(x)
\end{aligned}
$$

so the first column of $\left[\frac{d}{d x}\right]_{B_{2}, B_{1}}$ is

$$
\begin{aligned}
{\left[\begin{array}{l}
0 \\
0
\end{array}\right] } \\
\begin{aligned}
\frac{d}{d x}[x] & =1 \\
& =1(1)+0(x)
\end{aligned}
\end{aligned}
$$

so the second column of $\left[\frac{d}{d x}\right]_{B_{2}, B_{1}}$ is

$$
\begin{aligned}
& {\left[\begin{array}{l}
1 \\
0
\end{array}\right] } \\
& \frac{d}{d x}\left[x^{2}\right]=2 x \\
&=0(1)+2(x)
\end{aligned}
$$

so the third column of $\left[\frac{d}{d x}\right]_{B_{2}, B_{1}}$ is

$$
\left[\begin{array}{l}
0 \\
2
\end{array}\right] .
$$

Therefore

$$
\left[\frac{d}{d x}\right]_{B_{2}, B_{1}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right] .
$$

4. This problem requires you to think geometrically. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation that reflects each vector across the line $y=-x$. Find the standard matrix of T.
Solution: By "standard matrix" we mean the matrix $[T]_{B_{2}, B_{1}}$ where $B_{2}=B_{1}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ are both the standard basis for \mathbb{R}^{2}.
It may help to visualize the transformations $T\left(\mathbf{e}_{1}\right)$ and $T\left(\mathbf{e}_{2}\right)$.

$$
\begin{aligned}
& T\left(\mathbf{e}_{1}\right)=\left[\begin{array}{c}
0 \\
-1
\end{array}\right]=-\mathbf{e}_{2}=0 \mathbf{e}_{1}+(-1) \mathbf{e}_{2}, \\
& T\left(\mathbf{e}_{2}\right)=\left[\begin{array}{c}
-1 \\
0
\end{array}\right]=-\mathbf{e}_{1}=(-1) \mathbf{e}_{1}+0 \mathbf{e}_{2}
\end{aligned}
$$

The matrix for T is

$$
\left[\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right]
$$

