\qquad

1. The derivative operator $\frac{d}{d x}$ is a linear map from the space of all differentiable functions $\mathbb{R} \rightarrow \mathbb{R}$ to the space of all functions $\mathbb{R} \rightarrow \mathbb{R}$. What is the null space of $\frac{d}{d x}$? What is the nullity of $\frac{d}{d x}$? Solution: The null space of $\frac{d}{d x}$ is the set of differentiable functions $f(x)$ such that $\frac{d}{d x} f(x)=0$. The only such functions are the constant functions, so null $\left(\frac{d}{d x}\right)$ is the set of constant functions. Every constant function can be written as a scalar multiple of the function $g(x)=1$, so $\operatorname{null}\left(\frac{d}{d x}\right)$ has basis $\{g(x)\}$. The nullity of $\frac{d}{d x}$ is

$$
\operatorname{dim}_{\mathbb{R}}\left(\operatorname{null}\left(\frac{d}{d x}\right)\right)=1
$$

2. Let $V=\mathbb{R}^{4}$ and

$$
W=\left\{a+b x+c x^{2}: a, b, c \in \mathbb{R}, 2 a+2 b-c=0\right\}
$$

viewed as real vector spaces.
a.) Construct a linear map $f: V \rightarrow W$ with rank 2 .

Solution: There are many possible answers here.
Let $(a, b, c, d) \in \mathbb{R}^{4}$. The easiest way to ensure f has rank less than or equal to 2 is to only use 2 components (say a and b) in the output. For example, we could choose

$$
f(a, b, c, d)=a+b x+(2 a+2 b) x^{2} .
$$

Notice that the $(2 a+2 b) x^{2}$ term is included so that the image of f is contained in W. We will see by part (b) that $\operatorname{dim}(\operatorname{range}(f))=2$, so $\operatorname{rank}(f)=2$.
b.) Find a basis for range (f).

Solution: This answer depends on your answer to part (a). In our case,

$$
\begin{align*}
\operatorname{range}(f) & =\{f(a, b, c, d): a, b, c, d \in \mathbb{R}\} \\
& =\left\{a+b x+(2 a+2 b) x^{2}: a, b \in \mathbb{R}\right\} \\
& =\left\{a\left(1+2 x^{2}\right)+b\left(x+2 x^{2}\right): a, b \in \mathbb{R}\right\} \tag{*}
\end{align*}
$$

We propose $B_{1}=\left\{1+x^{2}, x+x^{2}\right\}$ as a basis for range (f). Notice that

$$
\begin{aligned}
& f(1,0,0,0)=1+2 x^{2} \\
& f(0,1,0,0)=x+2 x^{2}
\end{aligned}
$$

so $B_{1} \subset \operatorname{range}(f)$. We can see from $(*)$ that range $(f)=\operatorname{span}\left(B_{1}\right)$.
Finally, we need to check that B_{1} is linearly independent. Let $c_{1}, c_{2} \in \mathbb{R}$ and suppose

$$
c_{1}\left(1+2 x^{2}\right)+c_{2}\left(x+2 x^{2}\right)=0
$$

Setting $x=0$ gives $c_{1}=0$, so the above equation becomes

$$
c_{2}\left(x+2 x^{2}\right)=0 .
$$

Setting $x=1$ gives $3 c_{2}=0$, so $c_{2}=0$. Therefore the functions are linearly independent.
c.) What is the nullity of f ?

Solution: This answer does not depend on your answer to part (a).
By the rank-nullity theorem

$$
\begin{aligned}
\operatorname{rank}(f)+\operatorname{nullity}(f) & =\operatorname{dim}(V) \\
& \downarrow \\
2+\operatorname{nullity}(f) & =4 \\
& \downarrow \\
\operatorname{nullity}(f) & =2
\end{aligned}
$$

d.) Find a basis for $\operatorname{null}(f)$.

Solution: This answer depends on your answer to part (a).
We want to find all $(a, b, c, d) \in \mathbb{R}$ such that

$$
\begin{aligned}
0 & =f(a, b, c, d) \\
& =a+b x+(2 a+2 b) x^{2} \\
& =a(1)+b(x)+(2 a+2 b) x^{2} .
\end{aligned}
$$

Since the set $\left\{1, x, x^{2}\right\}$ is linearly independent, the only way for this to be true is if $a=b=0$. Therefore $(a, b, c, d) \in \operatorname{null}(f)$ if and only if $a=b=0$. That is,

$$
\operatorname{null}(f)=\{(0,0, c, d): c, d \in \mathbb{R}\}
$$

It is easy to check that $B_{2}=\{(0,0,1,0),(0,0,0,1)\}$ is a basis for $\operatorname{null}(f)$.
3. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear map that rotates vectors by 45 degrees counter-clockwise about the origin.
a.) Find the standard matrix for T.

Solution: By standard matrix, we mean the matrix $[T]_{B_{2}, B_{1}}$ where B_{1} and B_{2} are both the standard basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}=\{(1,0),(0,1)\}$ for \mathbb{R}^{2}.

Using some basic trigonometry, we get

$$
\begin{aligned}
T\left(\mathbf{e}_{1}\right) & =\left(\cos \left(45^{\circ}\right), \sin \left(45^{\circ}\right)\right) \\
& =\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) \\
& =\frac{\sqrt{2}}{2} \mathbf{e}_{1}+\frac{\sqrt{2}}{2} \mathbf{e}_{2}
\end{aligned}
$$

so

$$
\left[T\left(\mathbf{e}_{1}\right)\right]_{B_{2}}=\left[\begin{array}{l}
\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2}
\end{array}\right]
$$

A similar calculation gives

$$
\begin{aligned}
T\left(\mathbf{e}_{1}\right) & =\left(\cos \left(135^{\circ}\right), \sin \left(135^{\circ}\right)\right) \\
& =\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) \\
& =-\frac{\sqrt{2}}{2} \mathbf{e}_{1}+\frac{\sqrt{2}}{2} \mathbf{e}_{2}
\end{aligned}
$$

so

$$
\left[T\left(\mathbf{e}_{2}\right)\right]_{B_{2}}=\left[\begin{array}{c}
-\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2}
\end{array}\right]
$$

Then the standard matrix for T is

$$
\left[\begin{array}{cc}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{array}\right]
$$

b.) Use the standard matrix to find $T(3,1)$.

Solution: If A is the standard matrix of T and $\mathbf{v} \in \mathbb{R}^{2}$ then $A \mathbf{v}$ gives the standard coordinates of $T(\mathbf{v})$. In our case we calculate

$$
\left[\begin{array}{cc}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{array}\right]\left[\begin{array}{l}
3 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} \\
3 \frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}
\end{array}\right]=\left[\begin{array}{c}
\sqrt{2} \\
2 \sqrt{2}
\end{array}\right]
$$

so

$$
\begin{aligned}
T(3,1) & =(\sqrt{2}) \mathbf{e}_{1}+(2 \sqrt{2}) \mathbf{e}_{2} \\
& =(\sqrt{2}, 2 \sqrt{2})
\end{aligned}
$$

c.) What is the nullity of T ? What is the rank of T ?

Solution: The only element that maps to $(0,0)$ under T is $(0,0)$, so

$$
\operatorname{null}(T)=\{(0,0)\}
$$

and $\operatorname{nullity}(f)=0$. The rank-nullity theorem gives

$$
\operatorname{rank}(T)=\operatorname{dim}\left(\mathbb{R}^{2}\right)-\operatorname{nullity}(T)=2-0=2 .
$$

4. Does there exist a linear map $f: \mathbb{R}^{4} \rightarrow \mathbb{R}$ with null space

$$
N=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}=3 x_{2}, x_{3}=x_{4}\right\} ?
$$

If yes, give an example of such a linear map. If no, explain why.
Solution: No such linear map exists. Notice that we can rewrite N as

$$
\begin{aligned}
N & =\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}=3 x_{2}, x_{3}=x_{4}\right\} \\
& =\left\{\left(3 x_{2}, x_{2}, x_{3}, x_{3}\right): x_{2}, x_{3} \in \mathbb{R}\right\} \\
& =\left\{x_{2}(3,1,0,0)+x_{3}(0,0,1,1): x_{2}, x_{3} \in \mathbb{R}\right\}
\end{aligned}
$$

It is not difficult to show that this set has basis $B=\{(3,1,0,0),(0,0,1,1)\}$, so $\operatorname{dim}(N)=2$.
Suppose N is the null space of $f: \mathbb{R}^{4} \rightarrow \mathbb{R}$. Then

$$
\operatorname{nullity}(f)=\operatorname{dim}(N)=2
$$

By the rank nullity theorem we must have

$$
\begin{aligned}
\operatorname{rank}(f)+\operatorname{nullity}(f) & =\operatorname{dim}\left(\mathbb{R}^{4}\right) \\
& \downarrow \\
\operatorname{rank}(f)+2 & =4 \\
& \downarrow \\
\operatorname{rank}(f) & =2
\end{aligned}
$$

But this is impossible, because f maps to a 1-dimensional space, so rank (f) is less than or equal to 1 . Therefore our assumption that N is the null space of f was incorrect.

