\qquad

1. Let V, W be vector spaces over a field F and let $f: V \rightarrow W$ and $g: W \rightarrow V$ be linear maps such that

$$
g \circ f(\mathbf{v})=\mathbf{v} \quad \text { for all } \mathbf{v} \in V
$$

(a) Prove that f is a monomorphism.

Solution: Let 0_{V} and 0_{W} represent the zero vectors in V and W respectively. To prove
f is a monomorphism, we want to show that null $(f)=\left\{0_{V}\right\}$.
Let u be an arbitrary element of (f). Then $f(u)=0_{W}$, so

$$
\begin{aligned}
u & =g \circ f(u) \\
& =g(f(u)) \\
& =g\left(0_{W}\right) \\
& =0_{V} .
\end{aligned}
$$

Therefore null $(f)=\left\{0_{V}\right\}$.
(b) Prove that g is an epimorphism.

Solution: Let v be an arbitrary element of V. To prove that g is an epimorphism, we must show that there exists some $w \in W$ such that $g(w)=v$.
Let $w=f(v)$. Then

$$
\begin{aligned}
g(w)= & =g(f(v)) \\
& =g \circ f(v) \\
& =v
\end{aligned}
$$

(c) What can we conclude about the relationship between $\operatorname{dim}(V)$ and $\operatorname{dim}(W)$?

Solution: We can conclude that $\operatorname{dim}(W) \geq \operatorname{dim}(V)$.
In order to reach a contradiction, assume instead that $\operatorname{dim}(W)<\operatorname{dim}(V)$. The ranknullity theorem tells us

$$
\begin{array}{rlr}
\operatorname{rank}(f)+\operatorname{nullity}(f) & =\operatorname{dim}(V) & \\
& \downarrow \\
\operatorname{nullity}(f) & =\operatorname{dim}(V)-\operatorname{rank}(f) & \\
& \geq \operatorname{dim}(V)-\operatorname{dim}(W) & \\
& & \text { since } \operatorname{rank}(f) \leq \operatorname{dim}(W) \\
& >0 & \\
\text { since } \operatorname{dim}(W)<\operatorname{dim}(V)
\end{array}
$$

Therefore f is not injective (i.e., not a monomorphism), contradicting part (a). A similar proof can be constructed using the rank-nullity theorem applied to g.
2. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear map that reflects each vector across the line $y=-x$ and let $S: P_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{2}$ be the map defined by

$$
S(u)=(u(0), u(2)) .
$$

(a) Find matrix representations for T, S, and $T S$.

Solution: To find the matrix representations, we must choose a basis for \mathbb{R}^{2} :

$$
\mathcal{B}_{1}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}
$$

and a basis for $P_{2}(\mathbb{R})$:

$$
\mathcal{B}_{2}=\left\{x^{2}, x, 1\right\}
$$

We can now find the matrix representations with respect to these bases.

$$
T\left(\mathbf{e}_{1}\right)=\left[\begin{array}{c}
0 \\
-1
\end{array}\right]=-\mathbf{e}_{2}=0 \mathbf{e}_{1}+(-1) \mathbf{e}_{2}
$$

$$
T\left(\mathbf{e}_{2}\right)=\left[\begin{array}{c}
-1 \\
0
\end{array}\right]=-\mathbf{e}_{1}=(-1) \mathbf{e}_{1}+0 \mathbf{e}_{2}
$$

The matrix for T is

$$
\left[\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right]
$$

$$
\begin{aligned}
S\left(x^{2}\right) & =\left(0^{2}, 2^{2}\right) & S(x) & =(0,2) \\
& =(0,4) & & =0 \mathbf{e}_{1}+2 \mathbf{e}_{2} \\
& =0 \mathbf{e}_{1}+4 \mathbf{e}_{2} & &
\end{aligned}
$$

The matrix for S is

$$
\left[\begin{array}{lll}
0 & 0 & 1 \\
4 & 2 & 1
\end{array}\right]
$$

The matrix for $T S$ is

$$
\left[\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
4 & 2 & 1
\end{array}\right]=\left[\begin{array}{rrr}
-4 & -2 & -1 \\
0 & 0 & -1
\end{array}\right] .
$$

(b) Which of the maps from part (a) are epimorphisms? Monomorphisms? Isomorphisms?

Solution:

- It is easy to see that T is its own inverse. Therefore by problem 1 parts (a) and (b), T is both a monomorphism and an epimorphism. Therefore T is an isomorphism.
- The map S is not a monomorphism, because

$$
\operatorname{dim}\left(P_{2}(\mathbb{R})\right)=3>2=\operatorname{dim}\left(\mathbb{R}^{2}\right)
$$

However, S is an epimorphsim, because the set

$$
\{(1,1),(0,2)\}=\{S(1), S(x)\} \subset \operatorname{range}(S)
$$

spans all of $\mathbb{R}^{2}\left(\right.$ so range $\left.(S)=\mathbb{R}^{2}\right)$.

- $T S$ is also a monomorphism but not an epimorphism. The arguments are similar to those given for the map S.

