MTH 342 Worksheet 7

Week 6 - 11/06/2019
Name: Answer Key
Recitation time: \qquad

1. Let V be a vector space with subsapces $U+W$. Prove that if $U+W=W$ then $U \subseteq W$.

Solution: We already know that $U \subseteq V+W$. Thus if $U+W=W$, then

$$
U \subseteq U+W=W
$$

so $U \subseteq W$.
2. Let

$$
\begin{aligned}
U & =\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}=x_{2}=x_{3}\right\} \\
V & =\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}+x_{3}=x_{4}, 2 x_{2}=x_{4}\right\} .
\end{aligned}
$$

(a) Write $U \cap V$ in set-builder notation.

Solution: To form the intersection, write the $U \cap V$ as a subset of \mathbb{R} with the conditions of both U and V :

$$
U \cap V=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}=x_{2}=x_{3}, x_{1}+x_{3}=x_{4}, 2 x_{2}=x_{4}\right\}
$$

Since $x_{1}=x_{2}=x_{3}$ we can rewrite this as

$$
U \cap V=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}=x_{2}=x_{3}, 2 x_{1}=x_{4}\right\}
$$

(b) Find a basis for $U \cap V$.

Solution: From part (a) we have

$$
\begin{aligned}
U \cap V & =\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}=x_{2}=x_{3}, 2 x_{1}=x_{4}\right\} \\
& =\left\{\left(x_{1}, x_{1}, x_{1}, 2 x_{1}\right): x_{1} \in \mathbb{R}\right\} \\
& =\left\{x_{1}(1,1,1,2): x_{1} \in \mathbb{R}\right\} .
\end{aligned}
$$

A basis for $U \cap V$ is $\{(1,1,1,2)\}$.
2. (Continued) Let

$$
\begin{aligned}
U & =\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}=x_{2}=x_{3}\right\} \\
V & =\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}+x_{3}=x_{4}, 2 x_{2}=x_{4}\right\} .
\end{aligned}
$$

(c) Find a basis for $U+V$.

Solution: Begin by finding bases for U and V.

$$
\begin{aligned}
U & =\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}=x_{2}=x_{3}\right\} \\
& =\left\{\left(x_{1}, x_{1}, x_{1}, x_{4}\right): x_{1}, x_{4} \in \mathbb{R}\right\} \\
& =\left\{x_{1}(1,1,1,0)+x_{4}(0,0,0,1): x_{1}, x_{4} \in \mathbb{R}\right\}
\end{aligned}
$$

so a basis for U is $\mathcal{B}_{1}=\{(1,1,1,0),(0,0,0,1)\}$.

$$
\begin{aligned}
V & =\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}+x_{3}=x_{4}, 2 x_{2}=x_{4}\right\} \\
& =\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{3}=2 x_{2}-x_{1}, 2 x_{2}=x_{4}\right\} \\
& =\left\{\left(x_{1}, x_{2}, 2 x_{2}-x_{1}, 2 x_{2}\right): x_{1}, x_{2} \in \mathbb{R}\right\} \\
& =\left\{x_{1}(1,0,-1,0)+x_{2}(0,1,2,2): x_{1}, x_{2} \in \mathbb{R}\right\}
\end{aligned}
$$

so a basis for V is $\mathcal{B}_{2}=\{(1,0,-1,0),(0,1,2,2)\}$.
Now consider the set $\mathcal{B}_{1} \cup \mathcal{B}_{2}$. Form a matrix A with the elements of $\mathcal{B}_{1} \cup \mathcal{B}_{2}$ as columns:

$$
A=\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & -1 & 2 \\
0 & 1 & 0 & 2
\end{array}\right]
$$

Now find the reduced row echelon form of A :

$$
A \xrightarrow{R R E F}\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Recall that a pivot element in a matrix is the first nonzero element of a row. A pivot column is a column containing a pivot element. In this case the pivot columns of $\operatorname{RREF}(A)$ are the first three columns. Therefore the first three columns of A form a basis for $U+V$:

$$
\mathcal{B}=\{(1,1,1,0),(0,0,0,1),(1,0,-1,0)\} .
$$

3. Find a vector space V with subspaces U_{1}, U_{2}, and W such that

$$
U_{1}+W=U_{2}+W
$$

but $U_{1} \neq U_{2}$.
Solution: Let $V=\mathbb{R}, W=\mathbb{R}, U_{1}=\mathbb{R}$, and $U_{2}=\{0\}$. Then

$$
U_{1}+W=\mathbb{R}=U_{2}+W
$$

but

$$
U_{1}=\mathbb{R} \neq\{0\}=U_{2} .
$$

