\qquad

1. Let U, V, and W be subspaces of \mathbb{R}^{4} defined by

$$
\begin{aligned}
U & =\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}=x_{2}, x_{3}=x_{4}\right\} \\
V & =\operatorname{span}(\{(1,0,0,1),(0,1,1,0)\}) \\
W & =\{(0, x, 0, y): x, y \in \mathbb{R}\}
\end{aligned}
$$

(a) Is $U+V$ a direct sum of U and V ?

Solution: No. Notice that

$$
(1,1,1,1) \in U
$$

and

$$
(1,1,1,1) \in V \quad(\text { since }(1,1,1,1)=(1,0,0,1)+(0,1,1,0))
$$

Therefore $(1,1,1,1) \in U \cap V$, so $U \cap V \neq\{(0,0,0,0)\}$.
(b) Is $V+W$ a direct sum of V and W ?

Solution: Yes. Let $(0, x, 0, y) \in W$. If $(0, x, 0, y)$ is also in U, then

$$
0=x_{1}=x_{2}=x \quad \text { and } \quad 0=x_{3}=x_{4}=y
$$

Therefore $V \cap W=\{(0,0,0,0)\}$.
2. Let

$$
V=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}=x_{2}, x_{4}=x_{1}+x_{3}\right\}
$$

Find a subspace W of \mathbb{R}^{4} such that $V \oplus W=\mathbb{R}^{4}$.
Solution: First find a basis for V :

$$
\begin{aligned}
V & =\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}=x_{2}, x_{4}=x_{1}+x_{3}\right\} \\
& =\left\{\left(x_{1}, x_{1}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{4}=x_{1}+x_{3}\right\} \\
& =\left\{\left(x_{1}, x_{1}, x_{3}, x_{1}+x_{3}\right) \in \mathbb{R}^{4}\right\} \\
& =\left\{x_{1}(1,1,0,1)+x_{3}(0,0,1,1): x_{2}, x_{3} \in \mathbb{R}\right\}
\end{aligned}
$$

so $\{(1,1,0,1),(0,0,1,1)\}$ is a basis for V. Now form the matrix A using the basis vectors as rows:

$$
A=\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

Notice that A is already in reduced row echelon form. Find the non-pivot columns of $\operatorname{RREF}(A)$:

$$
\begin{array}{cccc}
{\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]} \\
& \uparrow & & \uparrow
\end{array}
$$

These are columns 2 and 4 . Let W be the span of standard basis vectors with a 1 in the coordinates corresponding to the non-pivot columns:

$$
W=\operatorname{span}\left(\left\{e_{2}, e_{4}\right\}\right)=\operatorname{span}(\{(0,1,0,0),(0,0,0,1)\})=\{(0, x, 0, y): x, y \in \mathbb{R}\}
$$

(continued on next page)

We now need to check that $V \cap W=\{(0,0,0,0)\}$. Let $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in V \cap W$. Then

$$
\begin{aligned}
x_{1}=x_{3}=0 & \text { since }\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in W, \\
x_{2}=x_{1}=0 & \text { since }\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in V, \\
x_{4}=x_{1}+x_{3}=0 & \text { since }\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in V .
\end{aligned}
$$

Therefore $V \cap W=\{(0,0,0,0)\}$, so $U+W=U \oplus W$ is a direct sum of U and W. To see that $U \oplus W=\mathbb{R}^{4}$, notice that

$$
\operatorname{dim}(U \oplus W)=\operatorname{dim}(U)+\operatorname{dim}(W)=2+2=4=\operatorname{dim}\left(\mathbb{R}^{4}\right)
$$

Since $U \oplus W$ is a subspace of \mathbb{R}^{4} of equal dimension, $U \oplus W=\mathbb{R}^{4}$.
3. Find a vector space V with subspaces U_{1}, U_{2}, and W such that

$$
U_{1} \oplus W=U_{2} \oplus W
$$

but $U_{1} \neq U_{2}$.
Solution: Let

$$
\begin{aligned}
V & =\mathbb{R}^{2} \\
U_{1} & =\{(x, 0): x \in \mathbb{R}\} \\
U_{2} & =\{(0, y): y \in \mathbb{R}\} \\
W & =\{(z, z): z \in \mathbb{R}\} .
\end{aligned}
$$

It is not hard to check that

$$
U_{1}+W=\operatorname{span}\{(1,0),(1,1)\}=\mathbb{R}^{2}
$$

and

$$
U_{2}+W=\operatorname{span}\{(0,1),(1,1)\}=\mathbb{R}^{2}
$$

so $U_{1}+W=U_{2}+W$.
Now notice that if $(a, b) \in U_{1} \cap W$ then $b=0$ (since $\left.(a, b) \in U_{1}\right)$ and $a=b=0$ (since $(a, b) \in W)$. Therefore $U_{1}+W$ is a direct sum of $U_{1}+W$. A similar argument shows that $U_{1}+W$ is a direct sum of U_{1} and W.
Finally, notice that $U_{1} \neq U_{2}$, since for example $(1,0) \in U_{1}$ but $(1,0) \notin U_{2}$.
4. Consider \mathbb{C} as a vector space over the field $F=\mathbb{C}$. Prove that the map $f: \mathbb{C} \rightarrow \mathbb{C}$ given by $f(z)=\bar{z}$ is not linear.
Solution: It can be checked that f is additive. Therefore we want to find $z \in \mathbb{C}$ and $\lambda \in F=\mathbb{C}$ such that $f(\lambda z) \neq \lambda f(z)$. Let

$$
z=1 \quad \text { and } \quad \lambda=i
$$

Then

$$
f(\lambda z)=f(i)=-i
$$

and

$$
\lambda f(z)=i \cdot f(1)=i \cdot 1=i,
$$

so $f(\lambda z) \neq \lambda f(z)$.

