Consider a linear map $f: \mathbb{R}^{2} \rightarrow M_{2 \times 2}(\mathbb{R})$ given by

$$
f(a, b)=\left[\begin{array}{cc}
a & a+b \\
a-b & b
\end{array}\right]
$$

Write a matrix that represents f by following the procedure:

- Find a basis for \mathbb{R}^{2}.
- Find a basis for $M_{2 \times 2}(\mathbb{R})$.
- Compute each column of $[f]_{B_{2}, B_{1}}$.
$V=\mathbb{R}^{2}$ has a basis $B_{1}=\left\{e_{1}, e_{2}\right\}$ where $e_{1}=(1,0)$,

$$
e_{2}=(0,1)
$$

$W=M_{2 \times 2}(\mathbb{R})$ has a basis $B_{2}=\left\{E_{1}, E_{2}, E_{3}, E_{4}\right\}$ where

$$
E_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad E_{2}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad E_{3}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \quad E_{4}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] .
$$

The matrix representation of f in basis B_{1}, B_{2} is

$$
[f]_{B_{2}, B_{1}}=\left[\begin{array}{cc}
1 & 1 \\
{\left[f\left(e_{1}\right)\right]_{B_{2}}} & {\left[f\left(e_{2}\right)\right]_{B_{2}}} \\
1 & 1
\end{array}\right]
$$

we have

$$
f\left(e_{1}\right)=f(1,0)=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]=E_{1}+E_{2}+E_{3} .
$$

Then $\quad[f(e)]_{B_{2}}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right]$
We have $f\left(e_{2}\right)=f(0,1)=\left[\begin{array}{cc}0 & 1 \\ -1 & 1\end{array}\right]=E_{2}-E_{3}+E_{4}$.
Then $\left[f\left(e_{2}\right]_{B_{2}}=\left[\begin{array}{c}0 \\ 1 \\ -1 \\ 1\end{array}\right]\right.$.
Conclusion:

$$
[f]_{B_{21} B_{1}}=1\left[\begin{array}{cc}
1 & 0 \\
1 & 1 \\
1 & -1 \\
0 & 1
\end{array}\right]
$$

