Worksheet 10/16/2019

1. Let P_2 be the vector spaces of all polynomials of degree ≤ 2 , with real coefficients. The set $B_0 = \{1, t, t^2\}$ is the standard basis of P_2 . Consider another basis $B = \{2, 1 - t, 2t^2 + 1\}$. Find the coordinate vector of the polynomial $f(t) = -2t^2 - 3t$ in basis B.

$$B_{0} = \{1, t, t^{2}\}$$

$$\widetilde{e_{1}} \in \widetilde{e_{2}} \in \widetilde{e_{3}}$$

$$B = \{2, 1-t, 2t^{2}+t\}$$

$$\widetilde{f_{1}} \quad \widetilde{f_{2}} \quad \widetilde{f_{3}}$$

We want to find [f]B, that is, a colum vector [4] such

that
$$f = 4f_1 + 4zf_2 + 4sf_3$$
.
This equation can be rewritten as

$$-2t^2 - 3t = 42 + 62(1-t) + 62(2t^2+1)$$

$$RHS = 2c_3 t^2 + (-c_2)t + (2c_1 + c_2 + c_3)$$

For LHS=RHS for all t, the coefficients of each power of t must match. Thus,

$$\begin{cases} 2c_{z} = -2 \\ -c_{z} = -3 \\ 2c_{1} + c_{2} + c_{3} = 0 \end{cases}$$

This results in $\begin{cases} c_3 = -1 \\ c_2 = 3 \\ c_1 = -1 \end{cases}$ Therefore, $[f_k]_B = \begin{bmatrix} -1 \\ 3 \\ -1 \end{bmatrix}$. 2. Consider a linear map $f: M_{2\times 2}(\mathbb{R}) \to M_{1\times 3}(\mathbb{R})$ given by

$$f\left(\begin{bmatrix}a&b\\c&d\end{bmatrix}\right) = \begin{bmatrix}a+b&c+d&a+b\end{bmatrix}$$

- (a) Find a basis for null(f). What is its dimension?
- (b) Find a basis for range(f). What is its dimension?

(A) null(q) =
$$\left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : f(\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} : [a+b + c+d + a+b] = [0 + 0 + 0] \right\}$$

= $\left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a+b=0, c+d=0 \right\}$
= $\left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : b=-a, d=-c \right\}$
= $\left\{ \begin{bmatrix} a & -a \\ c & -c \end{bmatrix} : a, c \in \mathbb{R} \right\}$
= $\left\{ a \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} : a, c \in \mathbb{R} \right\}$
= $span \left\{ \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} : a, c \in \mathbb{R} \right\}$
To check $g \left[A_1, A_2 \right] : a = basis of null (A), we need to check if it
is linear independent. Consider $a, a, c \in \mathbb{R}$ satisfying
 $aA_1 + cA_2 = 0.$$

This is equivalent to

$$c_{1}\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} + c_{2}\begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

which is equivalent to

$$\begin{bmatrix} c_1 & -c_1 \\ c_2 & -c_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

which gives
$$q = q = 0$$
. Therefore, $\{A_1, A_2\}$ is linearly independent.
It is a bass of null(k). The dimension of null(k) is 2.
(b) range(f) = $\left\{ f\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right)$: $a_1b_1c_1d \in R$
 $= \{ fa + b & c+d & a+b \}$: $a_1b_1c_1d \in R$
 $= \{ fa - c & a \} + \{ b & d & b \}$: $a_1b_1c_1d \in R$
 $= \{ fa - c & a \} + \{ b & d & b \}$: $a_1b_1c_1d \in R$
 $= \{ fa - c & a \} + \{ b & c+d + b \}$: $a_1b_1c_1d \in R$
 $= \{ fa - c & a \} + \{ c+d + b \}$: $a_1b_1c_1d \in R$
 $= \{ fa - c & a \} + \{ c+d + b \} = 0 + b \}$
 $= \{ af(1 - 0 + b + f(0 + 1) \} + d f(0 + 0)$:
 $a_1b_1c_1d \in R$
 $= \{ af(1 - 0 + b + f(0 + 1) \} + d f(0 + 0)$:
 $= a_1b_1c_1d \in R$
 $= \{ af(1 - 0 + b + f(0 + 1) \} + d f(0 + 0)$
 $= a_1b_1c_1d \in R$
 $= span \{ f(1 - 0 + b + f(0 + 1) \} + d f(0 + 0)$
 $= a_1b_1c_1d \in R$
 $= span \{ f(1 - 0 + b + f(0 + 0) \} = 0$
To deck $q \{ f(1, D_n) \}$ is linearly independent, we consider q_1 and
 $c_2 - stuffyring = Q_1 + q_1D = 0$. This equivalent to
 $= q(1 - 0 + b + q(0 + 0) = [0 - 0 - 0]$
which is equive to
 $= fq - q_1 = (z - 0 - 0)$
 $= a_1b_1c_2d = 0$
 $= a_1b_2d = 0$
 $= a_2d =$