1. Let P_{2} be the vector spaces of all polynomials of degree ≤ 2, with real coefficients. The set $B_{0}=\left\{1, t, t^{2}\right\}$ is the standard basis of P_{2}. Consider another basis $B=\left\{2,1-t, 2 t^{2}+1\right\}$. Find the coordinate vector of the polynomial $f(t)=-2 t^{2}-3 t$ in basis B.

$$
\begin{aligned}
& B_{0}=\{\begin{array}{l}
\left\{1, \sim_{e_{1}}^{t},\right. \\
e_{2}
\end{array} \underbrace{t^{2}}_{e_{3}}\} \\
& B=\underbrace{\{2,}_{f_{1}} \underbrace{1-t}_{f_{2}}, \underbrace{2 t^{2}+1}_{f_{3}}\}
\end{aligned}
$$

we want to find $[f]_{B}$, that is, a colum vector $\left[\begin{array}{c}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]$ such
that $f=c_{f_{1}}+c_{2} f_{2}+c_{3} f_{3}$.
This equation can be rewritten as

$$
\begin{aligned}
& -2 t^{2}-3 t=c_{1} 2+c_{2}(1-t)+c_{3}\left(2 t^{2}+1\right) \\
\text { RHS }= & 2 c_{3} t^{2}+\left(-c_{2}\right) t+\left(2 c_{1}+c_{2}+c_{3}\right)
\end{aligned}
$$

For LHS = RHS for all t, the coefficients of each power of t must match. Thus,

$$
\left\{\begin{array}{c}
2 c_{3}=-2 \\
-c_{2}=-3 \\
2 c_{1}+c_{2}+c_{3}=0
\end{array}\right.
$$

This results in $\left\{\begin{array}{l}c_{3}=-1 \\ c_{2}=3 \\ c_{1}=-1\end{array}\right.$
Therefore, $\quad[f]_{B}=\left[\begin{array}{c}-1 \\ 3 \\ -1\end{array}\right]$.
2. Consider a linear map $f: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{1 \times 3}(\mathbb{R})$ given by

$$
f\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{lll}
a+b & c+d & a+b
\end{array}\right]
$$

(a) Find a basis for null (f). What is its dimension?
(b) Find a basis for range (f). What is its dimension?
(a)

$$
\begin{aligned}
& \operatorname{null}(f)=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: \quad f\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]\right\} \\
& =\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]:\left[\begin{array}{lll}
a+b & c+d & a+b
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]\right\} \\
& =\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: \quad a+b=0, c+d=0\right\} \\
& =\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: b=-a, d=-c\right\} \\
& =\left\{\left[\begin{array}{cc}
a & -a \\
c & -c
\end{array}\right]: \quad a, c \in \mathbb{R}\right\} \\
& =\left\{a\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right]+c\left[\begin{array}{cc}
0 & 0 \\
1 & -1
\end{array}\right]: a, c \in \mathbb{R}\right\} \\
& =\operatorname{span}\{\underbrace{\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right]}_{A_{1}}, \underbrace{\left.\left[\begin{array}{ll}
0 & 0 \\
1 & -1
\end{array}\right]\right\}}_{A_{2}}
\end{aligned}
$$

To check of $\left\{A_{1}, A_{2}\right\}$ is a basis of null (A), we need to check if it is linear independent. Consider $c_{1}, c_{2} \in \mathbb{R}$ satisfying

$$
c_{1} A_{1}+c_{2} A_{2}=0
$$

This is equivalent to

$$
c_{1}\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right]+c_{2}\left[\begin{array}{cc}
0 & 0 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

which is equivalent to

$$
\left[\begin{array}{ll}
c_{1} & -c_{1} \\
c_{2} & -c_{2}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

which gives $c_{1}=c_{2}=0$. Therefore, $\left\{A_{1}, A_{2}\right\}$ is linearly independent. It is a bass of null (A). The dimension of null (A) is 2 .
(b)

$$
\begin{aligned}
& \operatorname{range}(f)=\left\{f\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right): a, b, c, d \in \mathbb{R}\right\} \\
& =\{[a+b c+d a+b]: a, b, c, d \in \mathbb{R}\} \\
& =\left\{\left[\begin{array}{lll}
a & c & a
\end{array}\right]+\left[\begin{array}{lll}
b & d & b
\end{array}\right]: a, b, c, d \in \mathbb{R}\right\} \\
& =\left\{\left[\begin{array}{lll}
a & 0 & a
\end{array}\right]+\left[\begin{array}{lll}
0 & c & 0
\end{array}\right]+\left[\begin{array}{lll}
b & 0 & b
\end{array}\right]+\left[\begin{array}{lll}
0 & d & 0
\end{array}\right]:\right. \\
& a, b, c, d \in \mathbb{R}\} \\
& =\left\{\begin{array}{lll}
a & 1 & 0
\end{array} 1\right]+c\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]+b\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]+d\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right] \text {. } \\
& a, b, c, d \in \mathbb{R}\} \\
& =\left\{(a+b)\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]+(c+d)\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]: a, b, c, d \in \mathbb{R}\right\} \\
& =\operatorname{span}\{\underbrace{1}_{D_{1}} \begin{array}{l}
1
\end{array}],\left[\begin{array}{lll}
{\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]}
\end{array}\right\}
\end{aligned}
$$

To check of $\left\{D_{1}, D_{2}\right\}$ is linearly independent, we consider c_{1} and c_{2} satisfying $a D_{1}+c_{2} D_{2}=0$. This eq. is equivalent to

$$
c_{9}\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]+c_{2}\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]
$$

which is equiv e to

$$
\left[\begin{array}{lll}
c_{1} & c_{2} & c_{1}
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]
$$

which is equiv. to

$$
\left\{\begin{array}{l}
c_{1}=0 \\
c_{2}=0
\end{array}\right.
$$

Therefore, $\left\{D_{1} D_{2}\right\}$ is a basis of range (f). The dimension is 2 .

