Worksheet
10/23/2019

1. Consider a linear map $f: \mathbb{R}^{4} \rightarrow M_{1 \times 2}(\mathbb{R})$ given by

$$
f(a, b, c, d)=\left[\begin{array}{ll}
a+b & a+b
\end{array}\right]
$$

Is f a monomorphism, epimorphism or isomorphism?
In this problem, $V=\mathbb{R}^{4}$ and $W=M_{1 \times 2}(\mathbb{R})$. We see that

$$
\operatorname{dim} V=4>\operatorname{dim} W=2
$$

Therefore, f is not a monomorphism. Consequently, it is not an isomorphism. To check if f is an epimorphism, we check of

$$
\begin{aligned}
& \operatorname{range}(f)=W \\
& \text { range }(f)=\{f(a, b, c, d): a, b, c, d \in \mathbb{R}\} \\
&=\{[a+b a+b]: a, b, c, d \in \mathbb{R}\} \\
&=\{[a+b a+b]: a, b \in \mathbb{R}\} \\
&=\left\{(a + b) \left[\begin{array}{ll}
1 & 1]: a, b \in \mathbb{R}\}
\end{array}\right.\right. \\
&=\operatorname{span}\left\{\left[\begin{array}{ll}
1 & 1
\end{array}\right]\right\}
\end{aligned}
$$

This is a one-dimensional vector space. Since W is twodimensional, range (f) is strictly smaller than W. Therefore, f is not an epimorphism.
2. Consider a linear map $f: \mathbb{R}^{4} \rightarrow M_{2 \times 2}(\mathbb{R})$ given by

$$
f(a, b, c, d)=\left[\begin{array}{ll}
b & a \\
d & c
\end{array}\right]
$$

Is f a monomorphism, epimorphism or isomorphism?
In this problem, $V=\mathbb{R}^{4}$ and $W=M_{2 \times 2}(\mathbb{R})$. We have

$$
\operatorname{dim} V=4=\operatorname{dim} W
$$

We now check if f is monomorphic.

$$
\begin{aligned}
\operatorname{rull}(f) & =\{(a, b, c, d): f(a, b, c, d)=0\} \\
& =\left\{(a, b, c, d):\left[\begin{array}{ll}
b & a \\
d & c
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right\} \\
& =\{(a, b, c, d): a=b=c=d=0\} \\
& =\{(0,0,0,0)\} .
\end{aligned}
$$

Thus, f is a monomorphism.
Because $\operatorname{dim} V=\operatorname{dim} W, f$ is also an epinorphism and an isomorphism.

