Worksheet 10/28/2019

1. Consider a linear map $f : \mathbb{R}^2 \to \mathbb{R}^2$ given by f(x, y) = (x + y, x + 2y). Is f a monomorphism, epimorphism or isomorphism?

In this problem, $V = W = IR^2$. We'll check if f is monomorphic. Let $v \in IR^2$ be such that f(v) = 0. We want to show v = 0. Write $v = (x_1y)$. We have $f(v) = f(x_1y) = (x_{1y}, x_{1+2y})$. Because $f(x_1y) = (0, 0)$, we have $\begin{cases} x + y = 0, \\ x + 2y = 0. \end{cases}$

.... From these equations, we get x=y=0. Thus, v=(0,0). Conclusion: f is monomorphic. Since dim $V = \dim W$, f is also isomorphic.

2. Consider a linear map $f : \mathbb{R}^2 \to \mathbb{R}^3$ given by f(x, y, z) = (x + y, y + z, z + x). Is f a monomorphism, epimorphism or isomorphism?

In this problem,
$$V = W = IR^3$$
. We'll check of f is monomorphic.
Let $v \in IR^3$ be such that $f(v) = 0$. We want to show $v = 0$. Write $v = (x_1y)$.
We have $f(v) = f(x_1y) = (x_1y_1y_1 + x_1 + x_1)$.
Because $f(x_1y) = (0, 0, 0)$, we have
 $\begin{cases} x + y = 0, \\ y + z = 0, \\ z + z = 0. \end{cases}$
From the first and second equation, we get $x = -y$ and $z = -y$. Substitute
 x and z into the third equation:
 $-2y = 0$.
Then $y = 0$, which implies $k = z = 0$. Thus, $v = (0, 0, 0)$.
Conclusion: f is monomorphic. Since $dim V = dim W$, f is also isomorphic.

3. Consider a linear map $F: P_3 \to P_2$ given by F(u) = u'. Here P_n denotes the vector space of all polynomials of real coefficients with degree $\leq n$. Is f a monomorphism, epimorphism or isomorphism?

In this problem,
$$V = I_3$$
 and $W = I_2$. Because
 $dim V = 4 > dim W = 2$,
F is not monomorphic (thus, not isomorphic). We'll check if F is
epimorphic.
range(F) = {F(u) : $u \in P_3$ } = {u': $u \in P_3$ }
A vector $u \in P_3$ is of the form $u = ax^3 + bx^2 + cx + d$ where a, b, c, d
are real constants. Then
 $u' = 3ax^2 + 2bx + c$.

Thus,

$$range(F) = \{ 3ax^2 + 2bx + c : a, b, c \in R \}$$
$$= Span \{ x^2, x, L \}$$

The set $\{x_1^L, x_1^R\}$ is the standard basis of I_2 . Thus, range (F) = W. Conclusion: F is epimorphic, but not monomorphic.