1. Consider a linear map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $f(x, y)=(x+y, x+2 y)$. Is f a monomorphism, epimorphism or isomorphism?

In this problem, $V=W=\mathbb{R}^{2}$. We'll check if f is monomorphic.
Let $v \in \mathbb{R}^{2}$ be such that $f(v)=0$. We want to show $v=0$. Write $v=(x, y)$. we have $f(v)=f(x, y)=(x+y, x+2 y)$.
Because $f(x, y)=(0,0)$, we have

$$
\left\{\begin{array}{l}
x+y=0, \\
x+2 y=0 .
\end{array}\right.
$$

… From these equations, we get $x=y=0$. Thus, $v=(0,0)$.
Conclusion: f is monomorphic. Since $\operatorname{dim} V=\operatorname{dim} W, f$ is also isomorphic.
2. Consider a linear map $f: \mathbb{R}^{\mathfrak{Z}} \rightarrow \mathbb{R}^{3}$ given by $f(x, y, z)=(x+y, y+z, z+x)$. Is f a monomorphism, epimorphism or isomorphism?

In this problem, $V=W=\mathbb{R}^{3}$. We'll check of f is monomorphic.
Let $v \in \mathbb{R}^{3}$ be such that $f(v)=0$. We want to show $v=0$. Write $v=(x, y)$. we have $f(v)=f(x, y)=(x+y, y+z, z+x)$.
Because $f(x, y)=(0,0,0)$, we have

$$
\left\{\begin{array}{l}
x+y=0 \\
y+z=0 \\
z+x=0
\end{array}\right.
$$

From the first and second equation, we get $x=-y$ and $z=-y$. Substitute x and z into the third equation:

$$
-2 y=0
$$

Then $y=0$, which implies $x=z=0$. Thus, $v=(0,0,0)$.
Conclusion: f is monomorphic. Since $\operatorname{dim} V=\operatorname{dim} W, f$ is also isomorphic.
3. Consider a linear map $F: P_{3} \rightarrow P_{2}$ given by $F(u)=u^{\prime}$. Here P_{n} denotes the vector space of all polynomials of real coefficients with degree $\leq n$. Is f a monomorphism, epimorphism or isomorphism?

In this problem, $V=P_{3}$ and $W=P_{2}$. Because

$$
\operatorname{dim} V=4>\operatorname{dim} W=2
$$

F is not monomorphic (thus, not is umorphic). We'll check if F is epimorphic.

$$
\operatorname{range}(F)=\left\{F(u): u \in P_{3}\right\}=\left\{u^{\prime}: u \in P_{3}\right\}
$$

A vector $u \in P_{3}$ is of the form $u=a x^{3}+b x^{2}+c x+d$ where a, b, c, d are real constants. Then

$$
u^{\prime}=3 a x^{2}+2 b x+c
$$

Thus,

$$
\begin{aligned}
\operatorname{range}(F) & =\left\{3 a x^{2}+2 b x+c: a, b, c \in R\right\} \\
& =\operatorname{Span}\left\{x^{2}, x, 1\right\}
\end{aligned}
$$

The set $\left\{x^{2}, x, 1\right\}$ is the standard basis of P_{2}. Thus, range $(F)=W$. Conclusion: F is epimorphic, but not monomorphic.

