Worksheet 10/30/2019

1. Let V be the set of all functions from $\mathbb R$ to $\mathbb R$ that vanish at 1 and 2. Check if V a vector space over $\mathbb R$.

2. Let $F: \mathbb{R}^2 \to P_1$ and $G: P_1 \to M_{2 \times 2}(\mathbb{R})$ be given as

$$F(a,b) = 2ax - b, \quad G(u) = \begin{bmatrix} u(1) & u(0) \\ u(0) & u(-1) \end{bmatrix}.$$

Here P_1 denotes the set of all polynomials of degree ≤ 1 with real coefficients.

(a) Find a matrix representation of F.

(b) Find a matrix representation of G.

(c) Find a matrix representation of $G \circ F$.

- 3. Let $F: P_2 \to P_2$ be defined by F(u) = xu'. Here P_2 denotes the set of all polynomials of degree ≤ 2 with real coefficients.
 - (a) Show that F is a linear map.

(b) Find a matrix representation of F.

(c) Find a basis of null(F). What is the nullity of F?

(d) Find a basis of range(F). What is the rank of F?