1. Let V be the set of all polynomials $f(x)$ of degree ≤ 2, with real coefficients, such that $f(1)=0$. Is V a vector space over \mathbb{R} ? If so, find a basis of V and the dimension of V.
we showed in previous class that V is a vector space over \mathbb{R}.
A vector in V is of the form $f(x)=a x^{2}+b x+c$ where $a, b, c \in \mathbb{R}$.
The condition $f(1)=0$ is equivalent to $a+b+c=0$. This gives $c=-a-b$.
Then

$$
\begin{aligned}
V & =\left\{\text { functions } f(x)=a x^{2}+b x+(-a-b) \text { where } a, b \in \mathbb{R}\right\} \\
& =\left\{f(x)=a\left(x^{2}-1\right)+b(x-1) \text { where } a, b \in \mathbb{R}\right\} \\
& =\operatorname{span}\{\underbrace{x^{2}-1}_{y_{1}}, \underbrace{x-1}_{y_{2}}\}
\end{aligned}
$$

V is the linear span of y_{1} and y_{2}. To check if $\left\{y_{1}, y_{2}\right\}$ is a basis of V, we only need to check if y_{1} and y_{2} are linearly independent. Consider the equation: $a y_{1}+b y_{2}=0$. This is equivalent to

$$
a x^{2}+b x+(-a-b)=0 \text { for all } x \in \mathbb{R} \text {. }
$$

This is a polynomial of degree ≤ 2. For it to have more than 2 roots, all coefficients must be equal to zero. This means

$$
a=b=-a-b=0
$$

Thus, $a=b=0$. We conclude that $\left\{y_{1}, y_{2}\right\}$ is a basis of V and

$$
\operatorname{dim}_{\mathbb{R}} V=2
$$

2. Let V be the set of all 2×2 matrices with real coefficients such that the sum of each row is equal to 0 . Is V a vector space over \mathbb{R} ? If so, find a basis of V and the dimension of V.

$$
\begin{aligned}
V & =\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: a, b, c, d \in \mathbb{R}, a+b=c+d=0\right\} \\
& =\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: b=-a, d=-c\right\} \\
& =\left\{\left[\begin{array}{ll}
a & -a \\
c & -c
\end{array}\right]: a, c \in \mathbb{R}\right\} \\
& =\left\{\left[\begin{array}{cc}
a & -a \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
c & -c
\end{array}\right]: a, c \in \mathbb{R}\right\} \\
& =\left\{a\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right]+c\left[\begin{array}{cc}
0 & 0 \\
1 & -1
\end{array}\right]: a, c \in \mathbb{R}\right\} \\
& =\operatorname{span}\{\underbrace{\left.\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & 0 \\
1 & -1
\end{array}\right]\right\}}_{E_{1}}
\end{aligned}
$$

We see that V is a linear span of $\left\{E_{1}, E_{2}\right\}$.
To check if $\left\{E_{1}, E_{2}\right\}$ is a basis of V, we only need to check if it is a linearly independent set. Consider the equation

$$
c_{1} E_{1}+c_{2} E_{2}=0
$$

This equation is equivalent to

$$
c_{1}\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right]+c_{2}\left[\begin{array}{cc}
0 & 0 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

Because LHS $=\left[\begin{array}{ll}c_{1} & -c_{1} \\ c_{2} & -c_{2}\end{array}\right]$ and $R H S=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$,

$$
a_{1}=c_{2}=0
$$

Therefore, $\left\{E_{1}, E_{2}\right\}$ is a basis of V and $\operatorname{dim}_{\mathbb{R}} V=2$.

