Worksheet
10/9/2019

1. View the determinant of 2×2 matrices as a map tet: $M_{2 \times 2}(\mathbb{R}) \rightarrow \mathbb{R}$. Is it a linear map? Verify your answer.

We want to show that dat is not a linear map.
Let $A=I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. Then $\operatorname{det} A=1$.
we have $2 A=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$. Then $\operatorname{det} 2 A=4$.
Because $\operatorname{det} 2 A \neq 2 \operatorname{det} A$, det is not a linear map.
2. Consider the map $F: \mathbb{R}^{\mathbb{R}} \rightarrow \mathbb{R}^{\mathbb{R}}$ defined by $F(u)(x)=x u(x)$, written briefly as $F(u)=x u$. Show that F is a linear map.

We want to show that F is a linear map.

- Check of F is additive:

Let $u_{1}, u_{2} \in \mathbb{R}^{\mathbb{R}}$. We want to show $F\left(u_{1}+u_{2}\right)=F\left(u_{1}\right)+F\left(u_{2}\right)$.
That is to show $F\left(u_{1}+u_{2}\right)(x)=\left(F\left(u_{1}\right)+F\left(u_{2}\right)\right)(x)$ for all $x \in \mathbb{R}$. $F i x$ an $x \in \mathbb{R}$. By the definition of F,

$$
\begin{aligned}
L H S & =x\left(u_{1}+u_{2}\right)(x)=x\left(u_{1}(x)+u_{2}(x)\right) . \\
R H S & =F\left(u_{1}\right)(x)+F\left(u_{2}\right)(x) \\
& =x u_{1}(x)+x u_{2}(x) \\
& =x\left(u_{1}(x)+u_{2}(x)\right)
\end{aligned}
$$

We see that LHS = RHS. Thus, f is additive.

- Check if F is scalar multiplicative:

Let $c \in \mathbb{R}$ and $u \in \mathbb{R}^{\mathbb{R}}$. We want to show $F(c u)=c F(u)$.

That is to show $F(c u)(x)=(\operatorname{cF}(x))(x)$ for all $x \in \mathbb{R}$.
Fir an $x \in \mathbb{R}$. By the definition of F,

$$
\begin{aligned}
\text { LHS } & =x(c u)(x)=x c u(x) . \\
\text { RHS } & =c F(u)(x)=c x u(x) .
\end{aligned}
$$

We see that $L H S=$ RHS. Hence, f is scalar multiplicative.

