Worksheet
11/06/2019

1. Let

$$
\begin{aligned}
U & =\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}=0\right\} \\
V & =\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}=x_{2}+x_{3}\right\}
\end{aligned}
$$

Show that $U+V=\mathbb{R}^{3}$.
See lecture notes for solution to this problem.
2. Let

$$
\begin{aligned}
U & =\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}=0, x_{2}=x_{3}\right\} \\
V & =\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}=x_{3}+x_{4}, x_{2}=x_{3}\right\}
\end{aligned}
$$

Find a basis of $U+V$.
Step 1: find a basis of U.

$$
\begin{aligned}
u=\left\{\left(0, x_{2}, x_{2}, x_{4}\right): x_{2}, x_{4}\right. & \in \mathbb{R}\}
\end{aligned}=\left\{\begin{array}{l}
x_{2}(0,1,1,0)+x_{4}(0,0,0,1): \\
\left.x_{2}, x_{4} \in \mathbb{R}\right\} \\
\\
=\operatorname{span}\{\underbrace{(0,1,1,0}_{u_{1}}), \underbrace{(0,0,0,1)\}}_{u_{2}} .
\end{array}\right.
$$

One can check that u_{1} and u_{2} are linearly independent. Thus, $\left\{u_{1}, u_{2}\right\}$ is a basis of U.

Step 2: find a basis of V.

$$
\begin{aligned}
V & =\left\{\left(x_{3}+x_{4}, x_{3}, x_{3}, x_{4}\right): x_{3}, x_{4} \in \mathbb{R}\right\} \\
& =\cdots \\
& =\operatorname{span}\{(\underbrace{(1,1,1,0}_{v_{1}}),(\underbrace{1,0,0,1}_{v_{2}})\}
\end{aligned}
$$

Step 3: $U+V=\operatorname{Col}(A)$ where

$$
A=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
u_{1} & u_{2} & v_{1} & v_{2} \\
1 & 1 & 1 & 1
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

After reducing A to RREF, we get

$$
A \xrightarrow{\text { PREF }}\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

pivot columns

The $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$ columns of A form a basis of Col (A). Therefore, a basis of $U+V$ is $\left\{u_{1}, u_{2}, v_{1}\right\}$.

