1. Consider the following subspaces of \mathbb{R}^{4} :

$$
\begin{aligned}
& V_{1}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}=x_{2}=0\right\}, \\
& V_{2}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}=x_{3}=0\right\}, \\
& V_{3}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{2}=x_{3}=x_{4}=0\right\}, \\
& V_{4}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}=x_{3}=x_{4}=0\right\} .
\end{aligned}
$$

Which of the following sums are direct sums: (a) $V_{1}+V_{2}$; (b) $V_{2}+V_{3}+V_{4}$; (c) $V_{1}+V_{3}+V_{4}$?
A basis of V_{1} is $B_{1}=\{(0,0,1,0),(0,0,0,1)\}$.

$$
\begin{array}{lll}
\prime & V_{2} \prime & B_{2}=\{(0,1,0,0),(0,0,0,1)\} . \\
" & V_{3}^{\prime \prime} & B_{3}=\{(1,0,0,0)\} \\
" & V_{4}^{\prime \prime} & B_{4}=\{(0,1,0,0)\} .
\end{array}
$$

$V_{1}+V_{2}$ is not a direct sum because $(0,0,0,1) \in V_{1} \cap V_{2}$.
To see of $V_{2}+V_{3}+V_{4}$ is a direct sum, we concatenate B_{2}, B_{3}, B_{4} :

$$
\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] \xrightarrow[B_{2}]{B_{3}} \underbrace{\text { RREF }}_{B_{4}}\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

not prot column
These 4 vectors are not linearly independent. Thus, $V_{2}+V_{3}+V_{4}$ is not a direct sum.

By a similar method, we can see that $V_{1}+V_{3}+V_{4}$ is a direct sum.
2. Let $F: P_{3} \rightarrow P_{3}$ be a linear map given by $F(u)=x u^{\prime}$. Consider the following subspaces $U=\operatorname{span}\{x, 1\}$ and $V=\operatorname{span}\left\{x^{2}-1, x+1\right\}$. Check whether U and V are invariant under F.

* Check if U is invariant under F :

Let $u \in U$. We want to check if $F(u) \in U$.
By the def. of U, we can write $u=a x+b$ for some $a, b \in \mathbb{R}$.
Then $F(u)=x u^{\prime}=a x$.
Then $F(u) \in U$. Thus, U is invariant under f.

* Check of V is invariant under F :

Let $v \in V$. We want to check if $F(v) \in V$.
By the definition of V, we can write $v=a\left(x^{2}-1\right)+b(x+1)$

$$
=a x^{2}+b x-a+b
$$

Then $\quad F(v)=x v^{\prime}=x(2 a x+b)$

$$
=2 a x^{2}+b x
$$

For $a=0$ and $b=1$, we have $v=x+1$ and $F(v)=x$. We will show that $x \notin V=\operatorname{span}\left\{x^{2}-1, x+1\right\}$.

Suppose by contradiction that $x \in V$. Then there are $c, d \in \mathbb{R}$ such that

$$
x=c\left(x^{2}-1\right)+d(x+1) \quad \forall x \in \mathbb{R}
$$

Equivalently, $\quad c x^{2}+(d-1) x-c+d=0 \quad \forall x \in \mathbb{R}$
This only happens of $\left\{\begin{array}{l}c=0 \\ d-1=0\end{array}\right.$
However, this system is inconsistent.
$c+d=0$
Therefore, $F(v)=x \notin V_{2}$ We conclude that V is not invariant
under F.

