Worksheet 11/13/2019

1. Consider the following subspaces of \mathbb{R}^4 :

$$V_1 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 = x_2 = 0\}, V_2 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 = x_3 = 0\}, V_3 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_2 = x_3 = x_4 = 0\}, V_4 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 = x_3 = x_4 = 0\}.$$

Which of the following sums are direct sums: (a) $V_1 + V_2$; (b) $V_2 + V_3 + V_4$; (c) $V_1 + V_3 + V_4$?

 $V_1 + V_2$ is not a direct sum because $(O_1 O_1 O_1 O_1) \in V_1 \cap V_2$. To see of $V_2 + V_3 + V_4$ is a direct sum, we concatenate B_1, B_3, B_4 :

These 4 vectors are not linearly independent. Thus, $V_2 + V_3 + V_4$ is not a direct sum.

By a similar method, we can see that $V_1 + V_2 + V_4$ is a direct sum. 2. Let $F: P_3 \to P_3$ be a linear map given by F(u) = xu'. Consider the following subspaces $U = \operatorname{span}\{x, 1\}$ and $V = \operatorname{span}\{x^2 - 1, x + 1\}$. Check whether U and V are invariant under F.

* Check if U is invariant under F:
Let
$$u \in U$$
. We want to check q $F(u) \in U$.
By the dq: q U, we can write $u = ax+b$ for some $a, b \in \mathbb{R}$.
Then $F(u) = xu' = ax$.
Then $F(u) \in U$. Thus, U is invariant under f:
 x Check q V is invariant under F:
Let $v \in V$. We want to check q $F(v) \in V$.
By the definition of V, we can write $v = a(x^2-1) + b(x+1)$
 $= ax^2 + bx - a + b$
Then $F(v) = xv' = x(2ax+b)$
 $= 2ax^2 + bx$
For $a = 0$ and $b = 1$, we have $v = x+1$ and $F(v) = x$.
We will show that $x \notin V = span \{x^2 - 1, n+1\}$.
Suppose by contradiction that $x \in V$. Then there are c, d $\in \mathbb{R}$

such that

$$\chi = c(n^{2}+) + d(n+1)$$
. $\forall n \in \mathbb{R}$

Equivalently, $c_{1}c_{1}^{2} + (d-1)c_{-c} + d = 0$ $\forall n \in \mathbb{R}$

This only happens if $\begin{cases} c=0 \\ d-1=0 \\ c+d=0 \end{cases}$ is inconsistent. Therefore, $F(v) = x \notin V_2$ We conclude that V is not invariant under F.