1. Let P_{3} be the vector space of all polynomials of degree ≤ 3 with real coefficients. Let $F: P_{3} \rightarrow P_{3}$ be a linear map given by $F(u)=x u^{\prime}+u$. Consider the following subspaces:

$$
\begin{aligned}
& V_{1}=\left\{u \in P_{3}: u(0)=0\right\}, \\
& V_{2}=\left\{u \in P_{3}: u(1)=0\right\} .
\end{aligned}
$$

Which of them is invariant under F ?
We will attempt to show that V_{1} is invariant under F. If we can't do that, we will switch to showing that V_{1} is not invariant under F.

Take $u \in V_{i}$ we want to show $F(u) \in V_{1}$. That is to show $F(u)(0)=0$. That is to show

$$
\begin{equation*}
\left.\left(x u^{\prime}+u\right)\right|_{x=0}=0 . \tag{*}
\end{equation*}
$$

we see that

$$
\operatorname{LHS}(*)=O u^{\prime}(0)+u(0)=u(0)
$$

which is equal to O because $u \in V_{1}$. Thus, ($*$) is true. We conclude that V_{1} is indeed invariant under F.

Now we also attempt to show that V_{2} is invariant under F. Take $u \in V_{2}$. We want to show $F(u)(1)=0$.

That is to show

$$
\begin{equation*}
\left.\left(x u^{\prime}+u\right)\right|_{\lambda=1}=0 \tag{xy}
\end{equation*}
$$

we have

$$
\begin{aligned}
& L(t S=1 u^{\prime}(1)+\underbrace{u(1)}=u^{\prime}(1) \\
&=0 \text { due to } u \in V_{2}
\end{aligned}
$$

We see that $L 1+S=u^{\prime}(1)$, not zero. For this reasons we now try to select a specific $u \in V_{2}$ such that $F(u) \notin V_{2}$. Once this is done, we conduce that V_{2} is not invariant under F.

We need to find $\underbrace{u \in V_{2}}$ such that $u^{\prime}(1) \neq 0$. degree ≤ 3,
vanishing at 1
Let us pick $u=x-1$.
2. Consider the following subspaces of $M_{2 \times 2}(\mathbb{R})$

$$
\begin{gathered}
V_{1}=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: a+d=b+c=0\right\}, \quad V_{2}=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: a+c=b=d=0\right\} \\
V_{3}=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: b=c=d=0\right\}
\end{gathered}
$$

Show that $V_{1} \oplus V_{2} \oplus V_{3}=M_{2 \times 2}(\mathbb{R})$.

See solution tu this problem in lecture notes.

