Worksheet 11/27/2019

1. Let P_2 be the vector space of all polynomials of degree ≤ 2 with real coefficients. Let $F: P_2 \to P_2$ be a linear map given by F(u) = xu'. Is F diagonalizable? If so, diagonalize F (i.e. find a basis of P_2 in which F is represented by a diagonal matrix.)

First, we find all eigenvalues.
For each
$$u \in P_{2}$$
, we write $u = ar^{2} + brtc$.
We solve for all $u \in P_{2}$, $\lambda \in R$ from the equation
 $P(u) = \lambda u$. (K)
LHS(K) = $\lambda u' = \chi(2ax+b) = \lambda av' + br$.
RHS(K) = $\lambda ar^{2} + \lambda br + \lambda c$.
For LHS = RHS, we need
 $\begin{cases} 2a = \lambda e \\ b = \lambda b \\ 0 = \lambda c \end{cases}$ or equivalently $\begin{cases} (2-\lambda)a = 0, \\ (-\lambda)b = 0, \\ \lambda c = 0. \end{cases}$
If $\lambda \neq 0, 1/2$ then $a = b = c = 0$. In this case $u = 0$.
Thus, λ is not an eigenvalue of F.
If $\lambda = 0$ then $a = b = 0$ and c is arbitrary in R. Thus,
 $F(0) = \{ u \in P_{2} : F(u) = 0u \} = \{ u = c \text{ (constant function): collection)} : collection = 1$
 $A = 1$ then $a = c = 0$ and b is arbitrary in R.
 $E(1) = \{ u \in P_{2} : F(u) = 1u \} = \{ u = bu : b \in R \}$

Thus, E(1) is 1-dim with basis B2= {x}. Similarly, EU) & 1-den with basis B3 = {n²}. Becaux dim 22 = 3 = dim El01+ dem El1) + dim EQ), Fis diagonalizable. The basis that diagonalizes Fis $B_2 B_1 L_1 B_3 = \{l, x, z^2\}.$ The matrix that represents F in basis B is $\left[F \right]_{\mathcal{B}} = \begin{bmatrix} \lambda_{1} & 0 \\ \lambda_{2} \\ 0 & \lambda_{3} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} .$