1. Let $P_{2}$ be the vector space of all polynomials of degree $\leq 2$ with real coefficients. Let $F: P_{2} \rightarrow P_{2}$ be a linear map given by $F(u)=x u^{\prime}$. Is $F$ diagonalizable? If so, diagonalize $F$ (i.e. find a basis of $P_{2}$ in which $F$ is represented by a diagonal matrix.)

First, we find all eigenvalues.
For each $u \in P_{2}$, we write $u=a x^{2}+b x+c$.
We solve for all $u \in P_{2}, \lambda \in \mathbb{R}$ from the equation

$$
\begin{gathered}
F(u)=\lambda u . \quad(k) \\
\operatorname{LHS}(*)=x u^{\prime}=x(2 a x+b)=2 a x^{2}+b x . \\
\operatorname{RHS}(k)=\lambda a x^{2}+\lambda b x+\lambda c .
\end{gathered}
$$

For LHS $=$ RHS, we need

$$
\left\{\begin{array} { l } 
{ 2 a = \lambda a } \\
{ b = \lambda b } \\
{ 0 = \lambda c }
\end{array} \quad \text { or equivalently } \quad \left\{\begin{array}{l}
(2-\lambda) a=0, \\
(1-\lambda) b=0, \\
\lambda c=0
\end{array}\right.\right.
$$

If $\lambda \neq 0,1,2$ then $a=b=c=0$. In this case $u=0$.
Thus, $\lambda$ is not an eigenvalue of $F$.
If $\lambda=0$ then $a=b=0$ and $c$ is arbitrary in $R$. Thus,

$$
E(0)=\left\{u \in P_{2}: F(u)=0 u\right\}=\{u=c \text { (constant function) }: C \in \mathbb{R}\}
$$

$E(0)$ is $l$-dimensional with basis $B_{1}=\{1\}$.
constant fundion 1.
If $\lambda=1$ then $a=c=0$ and $b$ is arbitrang in $R$.

$$
E(l)=\left\{u \in I_{2}: F(u)=1 \cdot u\right\}=\{u=b x: b \in \mathbb{R}\}
$$

Thus, $E(1)$ is 1 -dim with basis $B_{2}=\{x\}$.
Similarly, $E(2)$ is 1 -dim with basis $B_{3}=\left\{x^{2}\right\}$.
Because

$$
\operatorname{dim} \underline{P}_{2}=3=\operatorname{dim} E(0)+\operatorname{dim} E(1)+\operatorname{dim} E(2),
$$

$F$ is diagonalizable. The basis that diagonalizes $F$ is

$$
B=B_{1} \cup B_{2} \cup B_{3}=\left\{1, x, x^{2}\right\} .
$$

The matrix that represents $F$ in basis $B$ is

$$
[F]_{B}=\left[\begin{array}{lll}
\lambda_{1} & 0 \\
0 & \lambda_{2} & \\
0 & & \lambda_{3}
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

