Worksheet 12/06/2019

1. Let $V = P_2(\mathbb{R})$ be the vector space of all polynomials of degree ≤ 2 with real coefficients. Let

$$V_1 = \{ f \in V : f(1) = 0 \}, V_2 = \{ f \in V : f(2) = 0 \}.$$

Is $V_1 + V_2$ a direct sum ?

2. Let $V = P_2(\mathbb{R})$. Define $\phi(u) = |u(1)| + |u(2)|$ for any $u \in V$. Is ϕ a norm on V?

3. Let $V = P_2(\mathbb{R})$. Define $\phi(u) = |u(1)| + |u(2)| + |u(3)|$ for any $u \in V$. Show that ϕ is a norm on V.

4. Let $V = M_{2 \times 2}(\mathbb{R})$. Let $f: V \to V$ be a linear map defined by $f(A) = A^T$. Is f diagonalizable? If it is, find a basis of V in which f is represented by a diagonal matrix.