Worksheet

12/06/2019

1. Let $V=P_{2}(\mathbb{R})$ be the vector space of all polynomials of degree ≤ 2 with real coefficients. Let

$$
\begin{aligned}
& V_{1}=\{f \in V: f(1)=0\}, \\
& V_{2}=\{f \in V: f(2)=0\} .
\end{aligned}
$$

Is $V_{1}+V_{2}$ a direct sum?
2. Let $V=P_{2}(\mathbb{R})$. Define $\phi(u)=|u(1)|+|u(2)|$ for any $u \in V$. Is ϕ a norm on V ?
3. Let $V=P_{2}(\mathbb{R})$. Define $\phi(u)=|u(1)|+|u(2)|+|u(3)|$ for any $u \in V$. Show that ϕ is a norm on V.
4. Let $V=M_{2 \times 2}(\mathbb{R})$. Let $f: V \rightarrow V$ be a linear map defined by $f(A)=A^{T}$. Is f diagonalizable? If it is, find a basis of V in which f is represented by a diagonal matrix.

