Some review problems for Final

- 1. Find the polynomial the fits the following points by Lagrange and Newton methods
 - (a) (-1,1), (0,-1), (1,1), (2,0).
 - (b) (-1,0), (0,-1), (1,0), (0,1).
- 2. Let $f(x) = \frac{1}{2+3x}$. For evenly spaced sample points $1 = x_1 < x_2 < \ldots < x_n = 2$, let P_n be the corresponding interpolation polynomial. Find *n* such that the integral $\int_1^2 P_n(x)dx$ approximates the integral $\int_1^2 f(x)dx$ with error not exceeding 10^{-4} .
- 3. We want to find an approximate value of the integral $I = \int_2^4 \frac{1}{x^3+1} dx$. Let *n* be the number of equal subintervals of the interval [2, 4].
 - (a) For n = 5, use right-point rule to approximate I.
 - (b) For n = 5, use midpoint rule to approximate I.
 - (c) For n = 5, use trapezoid rule to approximate I.
 - (d) For n = 5, use Simpson rule to approximate I.
 - (e) How big should n be such that the approximate value of I by midpoint rule is under 10^{-4} ?
 - (f) The same question as Part (e) but for Simpson rule.