Some review problems for Final

1. Find the polynomial the fits the following points by Lagrange and Newton methods
(a) $(-1,1),(0,-1),(1,1),(2,0)$.
(b) $(-1,0),(0,-1),(1,0),(0,1)$.
2. Let $f(x)=\frac{1}{2+3 x}$. For evenly spaced sample points $1=x_{1}<x_{2}<\ldots<x_{n}=2$, let P_{n} be the corresponding interpolation polynomial. Find n such that the integral $\int_{1}^{2} P_{n}(x) d x$ approximates the integral $\int_{1}^{2} f(x) d x$ with error not exceeding 10^{-4}.
3. We want to find an approximate value of the integral $I=\int_{2}^{4} \frac{1}{x^{3}+1} d x$. Let n be the number of equal subintervals of the interval $[2,4]$.
(a) For $n=5$, use right-point rule to approximate I.
(b) For $n=5$, use midpoint rule to approximate I.
(c) For $n=5$, use trapezoid rule to approximate I.
(d) For $n=5$, use Simpson rule to approximate I.
(e) How big should n be such that the approximate value of I by midpoint rule is under 10^{-4} ?
(f) The same question as Part (e) but for Simpson rule.
