Problem 1.

Let $f(x)=x e^{-x^{2}}$.
a) Find the degree $2 n+1$ Taylor polynomial for $f(x)$, about the point $x_{0}=0$.

Solution

First note that

$$
e^{t}=\sum_{k=0}^{\infty} \frac{t^{k}}{k!}
$$

We could substitute and apply a derivative, or substitute and construct the desired sequence. We choose the latter approach for brevity. By substitution we obtain

$$
e^{-x^{2}}=\sum_{k=0}^{\infty} \frac{\left(-x^{2}\right)^{k}}{k!}=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{k!}
$$

Then multiply by x to obtain

$$
x e^{-x^{2}}=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{k!}
$$

We can truncate the infinite series to obtain a Taylor approximation of degree $2 n+1$ of function f as

$$
q_{2 n+1}(x)=\sum_{k=0}^{n} \frac{(-1)^{k} x^{2 k+1}}{k!}
$$

b) Bound the error in degree $2 n+1$ approximation for $|x| \leq 2$.

Solution

Note that

$$
e^{t}=p_{n}(t)+R_{n}(t) \Longrightarrow e^{-x^{2}}=p_{n}\left(-x^{2}\right)+R_{n}\left(-x^{2}\right)
$$

Which gives

$$
x e^{-x^{2}}=\underbrace{x p_{n}\left(-x^{2}\right)}_{\text {Taylor poly. } q_{2 n+1}}+\underbrace{x R_{n}\left(-x^{2}\right)}_{\text {error term } E_{2 n+1}}
$$

Then

$$
\left|f(x)-q_{2 n+1}(x)\right|=\left|x R_{n}\left(-x^{2}\right)\right|
$$

The left term in the sum is already known. The error term is therefore $x R_{n}\left(-x^{2}\right)$, which we can bound over $[-2,2]$. Indeed, put $t=-x^{2}$. Since x varies between -2 and $2, t$ varies between -4 and 0 . We apply Lagrange's theorem for the function $g(t)=e^{t}$. There exists c between 0 and t such that

$$
R_{n}(t)=\frac{g^{(n+1)}(c)}{(n+1)!} t^{n}=\frac{e^{c}}{(n+1)!} t^{n}
$$

Then

$$
\left|R_{n}(t)\right| \leq \frac{e^{0}}{(n+1)!}|t|^{n} \leq \frac{4^{n}}{(n+1)!}
$$

Therefore, the error term is estimated as follows:

$$
\left|E_{2 n+1}(x)\right|=\left|x R_{n}\left(-x^{2}\right)\right|=|x|\left|R_{n}\left(-x^{2}\right)\right| \leq \frac{2 \cdot 4^{n}}{(n+1)!}
$$

c) Find n so as to have $2 n+1$ th degree Taylor approximation with error of at most 10^{-9} on $[-2,2]$.

Solution

To make sure that the size of error term $E_{2 n+1}(x)$ is under $\epsilon=10^{-9}$, we only need to find n such that

$$
\frac{2 \cdot 4^{n}}{(n+1)!}<\epsilon
$$

And we find that $n=23$ is the smallest n for this inequality to be satisfied.

Problem 2.

Convert the number $(101.011)_{2}$ from binary to base 10 .

Solution

$$
(101.011)_{2}=1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}+0 \times 2^{-1}+1 \times 2^{-2}+1 \times 2^{-3}=5.375
$$

Problem 3.

Convert the number 3.7 from decimal to binary system.

Solution

$$
3.7=2 \times 2^{1}+1 \times 2^{0}+0.7
$$

We need a base 2 expansion for 0.7 . Note that $0.7 \times 2=1.4$, so we record a 1 . Then $0.4 \times 2=0.8$, so we record a 0 . Then $0.8 \times 2=1.6$, so we record a 1 . Then $0.6 \times 2=1.2$, so we record a 1 . Then $0.2 \times 2=0.4$, so we record a 0 . And finally $0.4 \times 2=0.8$, the second term in the sequence. This describes a repeating base 2 expansion. Thus

$$
3.7=11.1 \overline{0110}_{2}
$$

Problem 4.

Do the following operations
a) $(1.001)_{2} \times 2^{2}+(1.101)_{2} \times 2^{4}$
b) $(1.001)_{2} \times 2^{1}-(1.101)_{2} \times 2^{3}$
c) $(1.001)_{2} \times 2^{7}+(1.101)_{2} \times 2^{7}$
d) $(1.001)_{2} \times 2^{6}+(1.100)_{2} \times 2^{-2}$

Write your results in both floating-point and decimal format. Make sure to show all your calculations, not just the final result. What do you notice when adding these two numbers of quite different size?

Solution

One needs to make sure that the result of each operation stays in the given floating-point format.
a)

$$
\begin{aligned}
(1.001)_{2} \times 2^{2}+(1.101)_{2} \times 2^{4} & =(0.01001)_{2} \times 2^{4}+(1.101)_{2} \times 2^{4} \quad \text { (matching exponents) } \\
& =(1.111001)_{2} \times 2^{4} \quad \text { (summing) } \\
& \approx(1.111)_{2} \times 2^{4} \quad \text { (rounding) }
\end{aligned}
$$

And $(1.111)_{2} \times 2^{4}=30_{10}$.
b)

$$
\begin{aligned}
(1.001)_{2} \times 2^{1}-(1.101)_{2} \times 2^{3} & =(0.01001)_{2} \times 2^{3}-(1.101)_{2} \times 2^{3} \quad \text { (matching exponents) } \\
& =-\left((1.101)_{2}-(0.01001)_{2}\right) \times 2^{3} \quad \text { (subtracting) } \\
& =(1.01011)_{2} \times 2^{3} \\
& \approx(1.011)_{2} \times 2^{3} \quad \text { (rounding) }
\end{aligned}
$$

c)

$$
(1.001)_{2} \times 2^{7}+(1.101)_{2} \times 2^{7}=\left((1.001)_{2}+(1.101)_{2}\right) \times 10^{7}=(1.011)_{2} \times 2^{8} \approx \infty
$$

because $e=8$ corresponds to $E=15$.
d)

$$
(1.001)_{2} \times 2^{6}+(1.101)_{2} \times 2^{-2}=(1.001000011)_{2} \times 2^{6} \approx(1.001)_{2} \times 2^{6}
$$

Adding two numbers of too different sizes causes the smaller number to be completely ignored. This results in arithmetic error $x+y=x$ when $x \gg y$.

Problem 5.

What number does the bit sequence 10011011 represent?

Solution

Note: See worksheet 10/7/19 for the structure of the 8 bit sequence.

- The number in the first position is 1 , therefor the sign is negative.
- The mantissa is $1.011_{2}\left(1 . a_{1} a_{2} a_{3}\right)$
- The exponent is $0011_{2}-7=3-7=-4$

We can then compute the value of the bit sequence (denoted x) as

$$
x=-1.011_{2} \times 2^{-4}=-0.0001011_{2}=-0.0859375
$$

Problem 6.

What is the smallest number greater than 1 that can be represented by floating-point format? Call this number b. The difference $\epsilon=b-1$ is called the machine epsilon of this number format. Find ϵ.

Solution

We have 7 digits to allocate, 4 to describe the exponent and 3 to describe the mantissa.

$$
b=1.001 \times 2^{0}
$$

is the smallest number greater than 1 accessible with 3 digits that we can store in the mantissa. b can be represented with the bit sequence 00111001 (spaces added for emphasis). Then

$$
b-1=1.001_{2}-1_{2}=0.001_{2}=2^{-3}=\frac{1}{2^{3}}=\frac{1}{8}=0.125_{10}
$$

Thus the machine epsilon of this floating point format is 0.125 base 10 , or 0.001_{2}.

