Homework 2

Due 10/11/2019

1. Let $f(x)=x e^{-x^{2}}$.
(a) Find the degree $2 n+1$ Taylor polynomial for $f(x)$, about the point $x_{0}=0$.

Hint: use the identity with $t=-x^{2}$

$$
e^{t}=1+\frac{t}{1!}+\frac{t^{2}}{2!}+\frac{t^{3}}{3!}+\ldots+\frac{t^{m}}{m!}+R_{m}(t) .
$$

(b) Bound the error in degree $2 n+1$ approximation for $|x| \leq 2$.

Hint: use Lagrange theorem to bound the term $R_{n}(t)$ where $t=-x^{2}$.
(c) Find n so as to have $2 n+1$ Taylor approximation with error of at most 10^{-9} on $[-2,2]$.
2. Convert the number $(101.011)_{2}$ from binary system to decimal system. (Make sure to show all your calculations, not just the final result.)
3. Convert the number 3.7 from decimal system to binary system. (Make sure to show all your calculations, not just the final result.)

In the following problems, use the floating-point format described in Worksheet 10/4/2019 (handed in class, also posted on Canvas and the course website).
4. Do the following operations. Write your results in both floating-point format and decimal format. Make sure to show all your calculations, not just the final result.
(a) $(1.001)_{2} \times 2^{2}+(1.101)_{2} \times 2^{4}$
(b) $(1.001)_{2} \times 2^{1}-(1.101)_{2} \times 2^{3}$
(c) $(1.001)_{2} \times 2^{7}+(1.101)_{2} \times 2^{7}$
(d) $(1.001)_{2} \times 2^{6}+(1.100)_{2} \times 2^{-2}$ What do you notice when adding these two numbers of quite different size?
5. What number does the bit sequence 10011011 represent?
6. What is the smallest number greater than 1 that can be represented by floating-point format? Call this number b. The difference $\epsilon=b-1$ is called the machine epsilon of this number format. Find ϵ.

