## Homework 3

Due 10/18/2019

1. In an attempt to have Matlab compute the sum $S=0.1+0.2+\ldots+0.9$, someone writes the following code:
```
s = 0
x = 0
while x = =1.0
    s = s + x
    x = x + 0.1
end
S = s
```

(a) Test this code on Matlab. Why does the program keep running indefinitely?

Note: to terminate the procedure, place the cursor in the command window and press Ctrl +C .
(b) What should be changed in the code to make it stop?
2. We would like to compute approximately a solution to the equation $e^{-x}=\sin x$. You are recommended to do the Matlab Practice 2 (posted on Canvas and course website) before starting this problem.
(a) Plot the function $f(x)=e^{-x}-\sin x$. What is an interval $[a, b]$ that contains only the smallest positive root of $f$ ?
(b) With the interval $[a, b]$ found in Part (a), use the bisection method with the help of your pocket calculator to do 4 iterations. What do you get?
(c) Write a Matlab program to compute an approximate solution with error tolerance $\epsilon=$ $10^{-6}$. You can modify the program given in the lecture (also posted on course website) or the program given on pages 75-76 of the textbook.
3. (Similar to Prob. 7, page 78.) The following functions are theoretically the same.

$$
\begin{aligned}
& f_{1}(x)=(x-1)^{3}, \\
& f_{2}(x)=-1+x(3+x(-3+x)), \\
& f_{3}(x)=x^{3}-3 x^{2}+3 x-1
\end{aligned}
$$

However, their computations in floating-point format are different. Let us do some experiments on finding roots of each function by bisection method. (Note that $x=1$ is the only root.)
(a) Modify slightly the program in Problem 2, Part (c) to a program that computes approximately the root of $f_{1}, f_{2}, f_{3}$ with error tolerance $\epsilon=10^{-6}$.
(b) Try the following initial intervals $[a, b]=[0,1.5],[0.5,2.0],[0.5,1.1]$. Explain the results.

