Homework 4

Due 10/25/2019

We know that a general quintic equation cannot be solved by radicals (Abel-Ruffini 1820s). However, we can find approximate roots within any prescribed error by bisection or Newton method. In Problems 1 through 6, let $f(x)=x^{5}-3 x^{2}+1$.

1. Use Intermediate Value Theorem to show that f has a root in each of the intervals $(-1,0)$, $(0,1),(1,2)$. Label these roots by r_{1}, r_{2}, r_{3} respectively.
2. Use Matlab to plot the graph of f on the interval $(-1,2)$.
3. With the help of your pocket calculator, use bisection method to compute approximately root r_{1}, with the initial interval $\left(a_{0}, b_{0}\right)=(-1,0)$, after 4 iterations.
4. Regarding to the previous problem, how many iterations are needed in order to compute r_{1} with error under 10^{-6} ? The interactive applet available at https://www.geogebra.org/m/ XndvAujc can help you visualize the bisection method.
5. Write a Matlab program to compute approximately r_{1}, r_{2}, r_{3} by Newton's method. This program should contain a 'while' loop which stops when $\left|x_{n+1}-x_{n}\right| \leq 10^{-6}$. The initial point is of your choice. (You may want to write 3 separate programs, one for each root.)
6. With each initial point $x_{0}=0.16,0.17,0.18,0.19$, which root does your program give? The interactive applet available at https://www.geogebra.org/m/DGFGBJyU can help you visualize Newton's method.
7. Let $f(x)=\sqrt[3]{x}$. We know that $x=0$ is the only root of f. Nevertheless, we want to test if Newton's method is able to give us this root.
(a) Plot the function f on the interval $[-5,5]$.
(b) Write the iterative formula of the Newton method.
(c) Express x_{n} as a function of n and x_{0}.
(d) For what x_{0} does x_{n} converge? Is Newton's method a good method to find root of f ?
