Homework 5

Due 11/08/2019

1. Let x_{n} be a sequence defined recursively by $x_{n+1}=\frac{1}{4}\left(x_{n}^{3}-3 x_{n}+6\right)$.
(a) Suppose x_{n} has a limit $a \in \mathbb{R}$. Find all possible values of a.
(b) What is the function g such that $x_{n+1}=g\left(x_{n}\right)$? Graph this function (using Matlab) on the interval $(-4,3)$. Find all the fixed points of g.
(c) Let $x_{0}=1.5$. Draw roughly (by hand) a cobweb diagram of the sequence x_{n}. The website https://www.geogebra.org/m/QJ79IWCL can be a helpful tool.
(d) Which of the fixed points are stable? Which are unstable? Recall: r is a stable fixed point if the sequence x_{n} converges to r as long as x_{0} is chosen close to r (but not equal to r).
(e) Given that the sequence x_{n} converges to 1 as $n \rightarrow \infty$, find the order of convergence of x_{n}.
2. In this problem, we want to find a polynomial curve passing through four points $(1,0),(2,2)$, $(3,0),(4,1)$.
(a) Find a polynomial P whose graph passes through the given points. Make sure to simplify P.
(b) Use Matlab to plot the graph of P on the interval $(0,5)$.
(c) What is the position on this curve when $x=1.5$? What is the slope at this point? In other words, find $P(1.5)$ and $P^{\prime}(1.5)$.
