
MTH 351 HW #6 Grader’s solutions

Problem 1.

In this problem, you can use the Matlab program posted on course website and Canvas (also mentioned in
the lecture notes on 11/08) that computes the interpolation polynomial. We want to see how well a given
function can be approximated by the interpolation polynomials. Let f be some function. On the interval
[−5, 5], take N equally spaced points −5 = x1 < x2 < . . . < xN = 5. Take N points (x1, y1), . . . , (xN, yN)
on the graph of f .

a) For the function f(x) = sin(x), plot the graph of the interpolation P onthe interval [−5, 5] in the case
N = 3, N = 6, N = 11, N = 21. What do you notice? Does the interpolation polynomial approximate well
the function f on the interval [−5, 5] when N gets larger?

b) Repeat part a with the objective function f(x) = 1
1+10x2 .

Solution

Grader’s note: Please do not submit all of the following Matlab code on paper, only the plots produced
and your analysis/interpretation.

a) We do this in Matlab with the following code modified from the starter code posted on the course
website.

Nlist = [3, 6, 11, 21]; % Make a list of candidates

P = sym('p' ,[1 length(Nlist)]); % A vector of symbolic objects to store

our polynomials

legend_key = cell(1, length(Nlist)+1); % To store the function names for

the legend

% Create empty vectors to store interpolation points

test_points_x = [];

test_points_y = [];

% it's a best practice to pre -allocate arrays , but the index arithmetic

% can get a bit messy

for Nindex = 1: length(Nlist) % Loop over the list values

N = Nlist(Nindex); % Set N from our list

legend_key{Nindex} = strjoin ({'N =', num2str(N)});

% Find & store the points to interpolate with

x = linspace(-5,5,N); % Get list of N values equally spaced over

[-5,5]

test_points_x = [test_points_x , x];

y = sin(x);

test_points_y = [test_points_y , y];

syms t

% contructing Lagrange polynomials L1, L2 ,..., Ln

L = zeros(1,N,'sym');
for i = 1:N

L(i) = 1;

z = x;

z(i) = []; % z is an array obtained from array x by

obmitting the i'th entry

for j = 1:N-1

Page 1 of 11 Fall 2019

MTH 351 HW #6 Grader’s solutions

L(i) = L(i)*(t - z(j))/(x(i) - z(j));

end

end

% construct P = y1*L1 + y2*L2 + ... + yn*Ln

Leg_Polynomial = L*transpose(y);

%Store the polynomial and a label

P(Nindex) = simplify(Leg_Polynomial);

end

legend_key{end} = "test points ";

for Nindex = 1: length(Nlist)

fplot(P(Nindex) ,[-5 5])

hold on

end

title('')
scatter(test_points_x ,test_points_y ,'ok')
legend(legend_key)

legend('boxoff ')
hold off

We can save the plot produced with the saveas function.

-5 -4 -3 -2 -1 0 1 2 3 4 5

-1

-0.5

0

0.5

1

Interpolations for varying number of points

N = 3
N = 6
N = 11
N = 21
test points

We can see that N = 3 (blue line) does not produce a good interpolation. Once we have 6 data points (red

Page 2 of 11 Fall 2019

MTH 351 HW #6 Grader’s solutions

line), the interpolation captures the general shape of the sin function. The N = 11 (yellow) and N = 21
(purple) interpolation curves are nearly indistinguishable, except for where f ′ is relatively small. As we
increase N ,we obtain a better interpolation. The N = 21 interpolation approximates f so well that we
cannot see the difference easily if we tried adding f to this plot. We can instead plot the error between the
two plots.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
10 -9 Error between Matlab sin function and interpolation

And so we see that for N = 21, the maximum error of the interpolation is < 2× 10−9 relative to the Matlab
sin function. This error is too small to see on the standard (units with order 0.5) graph. This figure can be
generated by appending the following code to the above code

t = linspace (-5,5,5000);

yp = sin(t);

pp = subs(P(4));

plot(t, yp -pp)

title('Error between Matlab sin function and interpolation ')

b) We can generalize the code we used in part a) and change the objective function we are interpolating.
This following Matlab code does this.

Nlist = [3, 6, 11, 21]; % Make a list of candidates

P = sym('p' ,[1 length(Nlist)]); % A vector of symbolic objects to store

our polynomials

legend_key = cell(1, length(Nlist)+1); % To store the function names for

the legend

Page 3 of 11 Fall 2019

MTH 351 HW #6 Grader’s solutions

% Create empty vectors to store interpolation points

test_points_x = [];

test_points_y = [];

% it's a best practice to pre -allocate arrays , but the index arithmetic

% can get a bit messy

for Nindex = 1: length(Nlist) % Loop over the list values

N = Nlist(Nindex); % Set N from our list

legend_key{Nindex} = strjoin ({'N =', num2str(N)});

% Find & store the points to interpolate with

x = linspace(-5,5,N); % Get list of N values equally spaced over

[-5,5]

test_points_x = [test_points_x , x];

y = objective(x); % a helper function below

test_points_y = [test_points_y , y];

syms t

% contructing Lagrange polynomials L1, L2 ,..., Ln

L = zeros(1,N,'sym');
for i = 1:N

L(i) = 1;

z = x;

z(i) = []; % z is an array obtained from array x by

obmitting the i'th entry

for j = 1:N-1

L(i) = L(i)*(t - z(j))/(x(i) - z(j));

end

end

% construct P = y1*L1 + y2*L2 + ... + yn*Ln

Leg_Polynomial = L*transpose(y);

%Store the polynomial and a label

P(Nindex) = simplify(Leg_Polynomial);

end

legend_key{end} = "test points ";

for Nindex = 1: length(Nlist)

fplot(P(Nindex) ,[-5 5])

hold on

end

title('Interpolations for varying number of points ')
scatter(test_points_x ,test_points_y ,'ok')
legend(legend_key ,'Location ','south ', 'NumColumns ' ,3)
legend('boxoff ')
hold off

function out = objective(x)

out = 1./(1+10.*x.^2);

end

This outputs the following plot

Page 4 of 11 Fall 2019

MTH 351 HW #6 Grader’s solutions

-5 0 5

-1000

-900

-800

-700

-600

-500

-400

-300

-200

-100

0

Interpolations for varying number of points

N = 3
N = 6

N = 11
N = 21

test points

This does not particularly well interpolate the ends of the interval, but does appear to interpolate the inner
[−3, 3] rather nicely. We can produce a second plot excluding the N = 21 to observe the behavior of the
other 3 interpolations.

% Find the interpolating polynomial using Lagrange formula

Nlist = [3, 6, 11, 21]; % Make a list of candidates

P = sym('p' ,[1 length(Nlist)]); % A vector of symbolic objects to store

our polynomials

legend_key = cell(1, length(Nlist)); % To store the function names for

the legend

% Create empty vectors to store interpolation points

test_points_x = [];

test_points_y = [];

% it's a best practice to pre -allocate arrays , but the index arithmetic

% can get a bit messy

for Nindex = 1: length(Nlist) % Loop over the list values

N = Nlist(Nindex); % Set N from our list

legend_key{Nindex} = strjoin ({'N =', num2str(N)});

% Find & store the points to interpolate with

x = linspace(-5,5,N); % Get list of N values equally spaced over

[-5,5]

test_points_x = [test_points_x , x];

y = objective(x); % a helper function below

test_points_y = [test_points_y , y];

syms t

Page 5 of 11 Fall 2019

MTH 351 HW #6 Grader’s solutions

% contructing Lagrange polynomials L1, L2 ,..., Ln

L = zeros(1,N,'sym');
for i = 1:N

L(i) = 1;

z = x;

z(i) = []; % z is an array obtained from array x by

obmitting the i'th entry

for j = 1:N-1

L(i) = L(i)*(t - z(j))/(x(i) - z(j));

end

end

% construct P = y1*L1 + y2*L2 + ... + yn*Ln

Leg_Polynomial = L*transpose(y);

%Store the polynomial and a label

P(Nindex) = simplify(Leg_Polynomial);

end

legend_key{end} = "test points ";

for Nindex = 1: length(Nlist)-1

fplot(P(Nindex) ,[-5 5])

hold on

end

title('Interpolations for varying number of points ')
scatter(test_points_x ,test_points_y ,'ok')
legend(legend_key ,'Location ','north ')
legend('boxoff ')
hold off

function out = objective(x)

out = 1./(1+10.*x.^2);

end

which produces the following plot (next page).

Page 6 of 11 Fall 2019

MTH 351 HW #6 Grader’s solutions

-5 0 5
-1

0

1

2

3

4

5

Interpolations for varying number of points

N = 3
N = 6
N = 11
test points

And we see that N = 3 poorly interpolates the data (test points), but as we increase the number of
interpolation points (N = 11, 21), the interpolations increase in maximum error. Interestingly, when we
choose N = 6, the interpolation is much more reasonable on [−5, 5], even though it fails to capture numerically
the maxima at x = 0. Large N does not necessarily imply a better interpolation.

Problem 2.

Use Newton’s formula to find a polynomial of degree ≤ 3 that fits the following points
(2, 1), (1, 0), (3,−1), (0, 2). Convert the polynomial into standard form.

Solution

We first find the coefficients. We can construct a table and perform the recursion to obtain

0 1 2 3

1 1 -1.5 -1
0 -0.5 0.5 0
-1 -1 0 0
2 0 0 0

and read off the first row to obtain the sequence of coefficients (cn) is 1, 1,−1.5,−1. Next we can construct
the polynomial basis.

P1(x) = x− 2

P2(x) = (x− 2)(x− 0)

P3(x) = (x− 2)(x− 0)(x− 3)

Page 7 of 11 Fall 2019

MTH 351 HW #6 Grader’s solutions

So

P (x) = c0 + c1P1(x) + c2P2(x) + c3P3(x)

P (x) = 1 + (1)(x− 2) − 3

2
(x)(x− 2) − (1)(x− 2)(x)(x− 3)

P (x) = 1 + x− 2 − 3

2
(x2) − 9

2
x− 3 − x3 + 6x2 − 11x + 6

P (x) = −x3 +
9

2
x2 − 11

2
x + 2.

This is the standard form for our polynomial.

Problem 3.

Reorder the points in Problem 2 as follows: (3,−1), (1, 0), (0, 2), (2, 1). Find the Newton’s formula corre-
sponding to these data points (in this order). Do you get the same polynomial as in problem 1? Explain
your observation.

Solution

We repeat the same procedure as in problem 2.

0 1 2 3

-1 -1/2 1/2 -1
0 -2 1.5 0
2 1/2 0 0
1 0 0 0

and read off the first row to obtain the sequence of coefficients (cn) is −1, 1/2, 1/2,−1. Next we can construct
the polynomial basis.

P1(x) = x− 3

P2(x) = (x− 3)(x− 1)

P3(x) = (x− 3)(x− 1)(x− 0)

So

P (x) = c0 + c1P1(x) + c2P2(x) + c3P3(x)

P (x) = −1 + −1

2
(x− 3) +

1

2
(x− 3)(x− 2) − (1)(x− 3)(x− 2)(x)

P (x) = −
(
x3

)
+

9

2
x2 − 11

2
x + 2

which gives the normal (common) form for our polynomial.

This is the same polynomial computed in the previous part. This is because the interpolating polynomial
is unique. We can reorder the points and compute a different set of basis polynomials, but then the coefficients
used to construct the interpolation change accordingly, so we can always find this polynomial in any basis
that could be generated from these data points.

Problem 4.

Write a function in Matlab that does the following:

Page 8 of 11 Fall 2019

MTH 351 HW #6 Grader’s solutions

• Input:

– a function f

– an array x, x = (x1, x2, . . . , xn).

• Output: The divided difference f [x1, x2, . . . , xn].

Test your function with f(t) = 1
1+t2 and x = (1, 2, 3, 4).

Solution

We can utilize the recursive definition of the divided differences formula and construct a table.

Xpts = [1,2,3,4];

f = @(x) 1./(1+x.^2);

lastval = last_divdif(Xpts , f);

disp(lastval)

%To check that our points are right

fplot(f,[0 ,4.5])

hold on

scatter(Xpts , f(Xpts),'filled ')
hold off

function lastval = last_divdif(Xpts , f)

coef_array = divdif(Xpts , f(Xpts));

disp(coef_array)

lastval = coef_array (1,end);

end

function coef_array = divdif(Xpts ,Ypts)

% Xpts and Ypts are data vectors of the same length

% Xpts = [x1 , x2 , x3 , ... xN]

% Ypts = [y1 , y2 , y3 , ... yN]

% coef_array is a table of intermediate divided difference

coefficients

datalength = length(Xpts);

coef_array = zeros(datalength);

coef_array (:,1) = Ypts '; % Write the data values to the first

column

for col = 2: datalength

for row = 1 : (datalength - col + 1)

%and now our magic step

coef_array(row , col) = (coef_array(row+1, col -1) -

coef_array(row , col - 1))/(Xpts(row + col -1)

- Xpts(row));

end

end

end

The coefficient c3 is −0.023529411764706.

Page 9 of 11 Fall 2019

MTH 351 HW #6 Grader’s solutions

Problem 5.

Solution

We slightly modify the function to not need the wrapper function that computes (y1, y2, . . . , yn) (as we are
provided points).

% Read in our data

xpts = [2,1, 3,0,4];

ypts = [1,0,-1,2,0];

data_length = length(xpts);

% Find div -dif coefficients

coef_array = divdif(xpts , ypts);

coef = coef_array (1,:);

% Find the basis polynomials

basis = ones(1,data_length , 'sym'); % To store our basis polynomials

syms t % Our symbolic variable

for basis_index = 2: length(basis) % Loop over each basis

for x_index = 1: basis_index -1 % Loop over the first basis_index

data points we want

basis(basis_index) = basis(basis_index) * (t - xpts(

x_index));

end

end

% Construct the interpolating polynomial

P = basis*coef ';
P = simplify(P) % Allow output to write P to console

fplot(P, [-0.5 ,4.5])

hold on

scatter(xpts , ypts)

title('Interpolating polynomial ')
hold off

%We built a recusive helper function that will make short work of the

Newton 's
%Divided Differences coefficients.

function coef_array = divdif(Xpts ,Ypts)

% Xpts and Ypts are data vectors of the same length

% Xpts = [x1 , x2 , x3 , ... xN]

% Ypts = [y1 , y2 , y3 , ... yN]

datalength = length(Xpts);

coef_array = zeros(datalength);

coef_array (:,1) = Ypts '; % Write the data values to the first

column

for col = 2: datalength

for row = 1 : (datalength - col + 1)

%and now our magic step

coef_array(row , col) = (coef_array(row+1, col -1) -

coef_array(row , col - 1))/(Xpts(row + col -1)

- Xpts(row));

end

end

Page 10 of 11 Fall 2019

MTH 351 HW #6 Grader’s solutions

end

This produces the following plot.

0 1 2 3 4

0

2

4

6

8

Interpolating polynomial

The polynomial that interpolates the data set is

P (x) =
1

2
x4 − 4x3 + 10x2 − 17

2
x + 2

Page 11 of 11 Fall 2019

