
MTH 351 HW #7 Grader’s solutions

Problem 1.

Given a function f on some interval, say [−1, 1, ] and an integer n > 1, we are interested in this question:
what set of sample points {x1, x2, . . . , xn} on [−1, 1] should we choose so that the interpolation polynomial
Pn can best approximate the function f? Note that the number of sample points n is fixed.

To investigate this question, let us consider an example f(x) = 1
1+10x2 and N = 11. Consider two

different ways of sampling:

• Evenly spaced, −1 = x1 < x2 < x3 . . . < xn = 1,

• Unevenly spaced zk = cos
(
2k−1
2N π

)
for k = 1, 2, . . . , n.

a) Use the Plot command to sketch each set of sample points on the interval [−1, 1].

b) Let Pn be the polynomial that interpolates the set of data points (x1, f(x1)), (x2, f(x2)), . . . , (xn, f(xn)).
Plot Pn and f on the same graph.

c) Let Qn be the polynomial that interpolates the set of data points (z1, f(z1)), (z2, f(z2)), . . . , (zn, f(zn)).
Plot Qn and f on the same graph.

d) Based on the graphs, is one way of sampling significantly better than the other? Give a rough explanation
for your observation?

e) Repeat parts a− d for the objective function f(x) = cos(x).

Solution

a) Some Matlab code:

n = 11;

xpts = linspace(-1,1,n);

zpts = 1:1:n;

zpts = cos ((2.*zpts -1) ./(2*n)*pi);

yxpts = objective(xpts);

yzpts = objective(zpts);

scatter(xpts , yxpts , 'filled ', 'r')
grid on

hold on

scatter(zpts , yzpts , 'filled ', 'g')
legend('Uniform ','Cosine ')
hold off

function out = objective(in)

out = 1./(1+10.*( in).^2);

end
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b) Some Matlab code:

% Read in our data

n = 11;

xpts = linspace(-1,1,n);

tpts = linspace (-1,1,500);

yxpts = objective(xpts);

ytpts = objective(tpts);

syms interP

interP = make_interpolating_polynomial(xpts , yxpts);

fplot(interP , [-1,1])

grid on

hold on

plot(tpts , ytpts)

scatter(xpts , yxpts , 'filled ', 'r')
title('Interpolating polynomial ')
hold off

% This function is recovered from HW6#5. Lagrange 's method is also

% acceptable for this problem , using the starter code on the course

website

function poly = make_interpolating_polynomial(xpts , ypts)

data_length = length(xpts);
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% Find div -dif coefficients

coef_array = divdif(xpts , ypts);

coef = coef_array (1,:);

% Find the basis polynomials

basis = ones(1,data_length , 'sym'); % To store our basis polynomials

syms t % Our symbolic variable

for basis_index = 2: length(basis) % Loop over each basis

for x_index = 1: basis_index -1 % Loop over the first basis_index

data points we want

basis(basis_index) = basis(basis_index) * (t - xpts(x_index));

end

end

% Construct the interpolating polynomial

P = basis*coef ';
poly = simplify(P);

end

%We built a recusive helper function that will make short work of the

Newton 's
%Divided Differences coefficients.

function coef_array = divdif(Xpts ,Ypts)

% Xpts and Ypts are data vectors of the same length

% Xpts = [x1 , x2, x3, ... xN]

% Ypts = [y1 , y2, y3, ... yN]

datalength = length(Xpts);

coef_array = zeros(datalength);

coef_array (:,1) = Ypts '; % Write the data values to the first column

for col = 2: datalength

for row = 1 : (datalength - col + 1)

%and now our magic step

coef_array(row , col) = (coef_array(row+1, col -1) - coef_array(

row , col - 1) )/(Xpts(row + col -1) - Xpts(row));

end

end

end

function out = objective(in)

out = 1./(1+10.*( in).^2);

end
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c) Some Matlab code:

% Read in our data

n = 11;

zpts = 1:1:n;

zpts = cos ((2.*zpts -1) ./(2*n)*pi);

tpts = linspace (-1,1,500);

ytpts = objective(tpts);

yzpts = objective(zpts);

syms interQ

interQ = make_interpolating_polynomial(zpts , yzpts);

fplot(interQ , [-1,1])

grid on

hold on

plot(tpts , ytpts)

scatter(zpts , yzpts , 'filled ', 'g')

title('Interpolating polynomial ')
hold off

% This function is recovered from HW6#5. Lagrange 's method is also

% acceptable for this problem , using the starter code on the course
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website

function poly = make_interpolating_polynomial(xpts , ypts)

data_length = length(xpts);

% Find div -dif coefficients

coef_array = divdif(xpts , ypts);

coef = coef_array (1,:);

% Find the basis polynomials

basis = ones(1,data_length , 'sym'); % To store our basis polynomials

syms t % Our symbolic variable

for basis_index = 2: length(basis) % Loop over each basis

for x_index = 1: basis_index -1 % Loop over the first basis_index

data points we want

basis(basis_index) = basis(basis_index) * (t - xpts(x_index));

end

end

% Construct the interpolating polynomial

P = basis*coef ';
poly = simplify(P);

end

%We built a recusive helper function that will make short work of the

Newton 's
%Divided Differences coefficients.

function coef_array = divdif(Xpts ,Ypts)

% Xpts and Ypts are data vectors of the same length

% Xpts = [x1 , x2, x3, ... xN]

% Ypts = [y1 , y2, y3, ... yN]

datalength = length(Xpts);

coef_array = zeros(datalength);

coef_array (:,1) = Ypts '; % Write the data values to the first column

for col = 2: datalength

for row = 1 : (datalength - col + 1)

%and now our magic step

coef_array(row , col) = (coef_array(row+1, col -1) - coef_array(

row , col - 1) )/(Xpts(row + col -1) - Xpts(row));

end

end

end

function out = objective(in)

out = 1./(1+10.*( in).^2);

end
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d) The points zk produces a significantly better interpolation polynomial than the evenly spaced xk. Pn

gives a slightly better approximation f than Qn near the center of the interval, but the error near the ends
of the interval of Pn is worse than Qn. The reason is two-fold. First, the points zk are more crowded near
the endpoints and sparser near the middle. Contrary to the uniform sample xk, the zk’s near the endpoints
are “closer” to the rest of z1,. . . zn. Thus, when x is close to −1 or 1, the product |x − z1| . . . |x − zn| is
smaller than |x−x1| . . . |x−xn|. Secondly, as shown in class, the n’th derivative of 1/(x2 + 1) grows rapidly
with respect to n. In fact, one can show that it grows at order (1/r)nn! (where r is the distant from x to
the closer endpoint) although the proof is more involved. Thus, the product

|x− x1|...|x− xn|
1

n!
max
[−1,1]

∣∣∣∣ dndtn
(

1

1 + t2

)∣∣∣∣ ∼ hn(n− 1)!
1

n!

n!

rn
∼ hn

rn
(n− 1)! ∼

(
2/r

n

)n

(n− 1)! (1)

is large when x is near ±1. It in fact goes to infinity as n→∞ if r < 2/e.

e) We change the objective function to f(x) = cos(x). The code is repeated for completeness.

Repeat of part a) Some Matlab code:

n = 11;

xpts = linspace(-1,1,n);

zpts = 1:1:n;

zpts = cos ((2.*zpts -1) ./(2*n)*pi);
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yxpts = objective(xpts);

yzpts = objective(zpts);

scatter(xpts , yxpts , 'filled ', 'r')
grid on

hold on

scatter(zpts , yzpts , 'filled ', 'g')
legend('Uniform ','Cosine ')
hold off

function out = objective(in)

out = cos(in);

end
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Repeat of part b) Some Matlab code:

% Read in our data

n = 11;

xpts = linspace(-1,1,n);

tpts = linspace (-1,1,500);

yxpts = objective(xpts);

ytpts = objective(tpts);

syms interP
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interP = make_interpolating_polynomial(xpts , yxpts);

fplot(interP , [-1,1])

grid on

hold on

plot(tpts , ytpts)

scatter(xpts , yxpts , 'filled ', 'r')
title('Interpolating polynomial ')
hold off

% This function is recovered from HW6#5. Lagrange 's method is also

% acceptable for this problem , using the starter code on the course

website

function poly = make_interpolating_polynomial(xpts , ypts)

data_length = length(xpts);

% Find div -dif coefficients

coef_array = divdif(xpts , ypts);

coef = coef_array (1,:);

% Find the basis polynomials

basis = ones(1,data_length , 'sym'); % To store our basis polynomials

syms t % Our symbolic variable

for basis_index = 2: length(basis) % Loop over each basis

for x_index = 1: basis_index -1 % Loop over the first basis_index

data points we want

basis(basis_index) = basis(basis_index) * (t - xpts(x_index));

end

end

% Construct the interpolating polynomial

P = basis*coef ';
poly = simplify(P);

end

%We built a recusive helper function that will make short work of the

Newton 's
%Divided Differences coefficients.

function coef_array = divdif(Xpts ,Ypts)

% Xpts and Ypts are data vectors of the same length

% Xpts = [x1 , x2, x3, ... xN]

% Ypts = [y1 , y2, y3, ... yN]

datalength = length(Xpts);

coef_array = zeros(datalength);

coef_array (:,1) = Ypts '; % Write the data values to the first column

for col = 2: datalength

for row = 1 : (datalength - col + 1)

%and now our magic step

coef_array(row , col) = (coef_array(row+1, col -1) - coef_array(

row , col - 1) )/(Xpts(row + col -1) - Xpts(row));

end

end

end
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function out = objective(in)

out = cos(in);

end
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Repeat of part c) Some Matlab code:

% Read in our data

n = 11;

zpts = 1:1:n;

zpts = cos ((2.*zpts -1) ./(2*n)*pi);

tpts = linspace (-1,1,500);

ytpts = objective(tpts);

yzpts = objective(zpts);

syms interQ

interQ = make_interpolating_polynomial(zpts , yzpts);

fplot(interQ , [-1,1])

grid on

hold on

plot(tpts , ytpts)

scatter(zpts , yzpts , 'filled ', 'g')

title('Interpolating polynomial ')
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hold off

% This function is recovered from HW6#5. Lagrange 's method is also

% acceptable for this problem , using the starter code on the course

website

function poly = make_interpolating_polynomial(xpts , ypts)

data_length = length(xpts);

% Find div -dif coefficients

coef_array = divdif(xpts , ypts);

coef = coef_array (1,:);

% Find the basis polynomials

basis = ones(1,data_length , 'sym'); % To store our basis polynomials

syms t % Our symbolic variable

for basis_index = 2: length(basis) % Loop over each basis

for x_index = 1: basis_index -1 % Loop over the first basis_index

data points we want

basis(basis_index) = basis(basis_index) * (t - xpts(x_index));

end

end

% Construct the interpolating polynomial

P = basis*coef ';
poly = simplify(P);

end

%We built a recusive helper function that will make short work of the

Newton 's
%Divided Differences coefficients.

function coef_array = divdif(Xpts ,Ypts)

% Xpts and Ypts are data vectors of the same length

% Xpts = [x1 , x2, x3, ... xN]

% Ypts = [y1 , y2, y3, ... yN]

datalength = length(Xpts);

coef_array = zeros(datalength);

coef_array (:,1) = Ypts '; % Write the data values to the first column

for col = 2: datalength

for row = 1 : (datalength - col + 1)

%and now our magic step

coef_array(row , col) = (coef_array(row+1, col -1) - coef_array(

row , col - 1) )/(Xpts(row + col -1) - Xpts(row));

end

end

end

function out = objective(in)

out = cos(in);

end

Fall 2019



MTH 351 HW #7 Grader’s solutions

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Interpolating polynomial

We see that either polynomial is particularly better or worse than the other. This is because the higher
derivatives of cosx remain bounded in [−1, 1]. This is not the case for 1/(x2 + 1). As shown in class, the
n’th derivative of 1/(x2 + 1) grows rapidly with respect to n. In fact, one can show that it grows at order
n!. As explained earlier, it is true the non-uniform sampling zk gives a smaller product |x− z1| . . . |x− zn|.
However, the fact that higher derivatives of cosx don’t grow in n keeps the product on LHS of (1) small,
regardless of the choice of sampling method.

Problem 2.

Interpolation gives an alternative method to approximate a function f by polynomials (other than a Taylor’s
theorem approximation). In this exercise, we investigate error estimates of this method. Let

f(x) = e
x
2 sin

(x
2

)
For evenly spaced points 0 = x1 < x2 < . . . < xn = 4, let Pn be the corresponding interpolation polynomial.

a) Show that |f ′(x)| ≤ e x
2 and that |f ′′(x)| ≤ e x

2 for all x.

b) It is known that (you don’t have to verify) |f (k)| ≤ e x
2 for any x ∈ R and k ≥ 1. Find n such that

|f(x)− Pn(x)| ≤ 10−4 ∀x ∈ [0, 4]

(∀ mean “for all”.)
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c) Find n such that the integral
∫ 4

0
Pn(x) dx approximates

∫ 4

0
f(x) dx with an error not exceeding 10−3.

Solution

a) We will use the fact that | sin(x)| ≤ 1 and | cos(x)| ≤ 1 for all x ∈ R.

f ′(x) =
1

2
e

x
2 sin

(x
2

)
− 1

2
e

x
2 cos

(x
2

)
=

1

2
e

x
2

(
sin
(x

2

)
− cos

(x
2

))
Then we apply the triangle inequality to obtain∣∣∣(sin

(x
2

)
− cos

(x
2

))∣∣∣ ≤ ∣∣∣sin(x
2

)∣∣∣+
∣∣∣cos

(x
2

)∣∣∣ ≤ 1 + 1

So

|f ′(x)| =
∣∣∣∣12e x

2

(
sin
(x

2

)
− cos

(x
2

))∣∣∣∣ ≤ 1

2
e

x
2 |1 + 1| = e

x
2

Now for f ′′.

f ′′(x) =
1

4

(
cos
(x

2

)
+ sin

(x
2

)
− sin

(x
2

)
+ cos

(x
2

))
=

1

4
e

x
2

(
2 cos

(x
2

))
≤ 1

4
e

x
2 (|1|+ |2|+ |1|) = e

x
2

(Hint for the general case: construct an induction proof that f (n) is a binomial of functions where p = sin
and q = cos.)

b) We can write an error bound for an interpolation polynomial as

|f(x)− Pn(x)| ≤ e
4
2

n!

n∏
j=1

(x− xj) ≤
e2

n!
(n− 1)!

(
4

n− 1

)n

=
e2

n

(
4

n− 1

)n

With a calculator we can find that n = 11 is the smallest n which satisfies the bound on [0, 4].

c) We require the inequality ∣∣∣∣∣
∫ b

a

f(t)− g(t) dt

∣∣∣∣∣ ≤
∫ b

a

|f(t)− g(t)| dt

(You do not have to prove this inequality)
We want to find n such that∣∣∣∣∫ 4

0

f(t) dt−
∫ 4

0

Pn(t) dt

∣∣∣∣ =

∣∣∣∣∫ 4

0

f(t)− Pn(t) dt

∣∣∣∣ ≤ 10−3

Then∣∣∣∣∫ 4

0

f(t)− Pn(t) dt

∣∣∣∣ ≤ ∫ 4

0

|f(t)− Pn(t)| dt ≤
∫ 4

0

sup
x∈[0,4]

|f(x)− Pn(x)| dt = sup
x∈[0,4]

|f(x)− Pn(x)|
∫ 4

0

1 dt

Then

= (4− 0) sup
x∈[0,4]

|f(x)− Pn(x)| ≤ 4e2

n

(
4

n− 1

)2

And we can test the right side with a calculator to find that n = 10 is the smallest n which satisfies the
desired error bound. (n = 7 is the smallest n which gives a permissible error.)
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Problem 3.

Let f(x) = 1
1+x . For evenly spaced sample points 0 = x1 < x2 < . . . < xn = 2, let Pn be the corresponding

interpolation polynomial. Find n such that

|f(x)− Pn(x)| ≤ 10−4∀x ∈ [0, 2]

Solution

We can write an error bound for an interpolation polynomial as

|f(x)− Pn(x)| ≤ |(−1)nn!|
(x+ 1)n+1

1

n!

n∏
j=1

(x− xj)

The product term here can be simplified further as xj is evenly spaced.

n∏
j=1

(x− xj) ≤
2

n
(n− 1)!

(see course lecture notes for the corresponding argument). Then

|f(x)− Pn(x)| ≤ 2n

(n− 1)n
1

n

n!

(0 + 1)n
= (n− 1)!

(
2

(n− 1)

)n

We can then evaluate the right side of the equality at several different values of n to find n = 31 is sufficient.
(Partial credit will be awarded on quality of argument and accuracy of the associated result.)
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