Problem 1.

Given a function f on some interval, say $[-1,1$,$] and an integer n>1$, we are interested in this question: what set of sample points $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ on $[-1,1]$ should we choose so that the interpolation polynomial P_{n} can best approximate the function f ? Note that the number of sample points n is fixed.

To investigate this question, let us consider an example $f(x)=\frac{1}{1+10 x^{2}}$ and $N=11$. Consider two different ways of sampling:

- Evenly spaced, $-1=x_{1}<x_{2}<x_{3} \ldots<x_{n}=1$,
- Unevenly spaced $z_{k}=\cos \left(\frac{2 k-1}{2 N} \pi\right)$ for $k=1,2, \ldots, n$.
a) Use the Plot command to sketch each set of sample points on the interval $[-1,1]$.
b) Let P_{n} be the polynomial that interpolates the set of data points $\left(x_{1}, f\left(x_{1}\right)\right),\left(x_{2}, f\left(x_{2}\right)\right), \ldots,\left(x_{n}, f\left(x_{n}\right)\right)$. Plot P_{n} and f on the same graph.
c) Let Q_{n} be the polynomial that interpolates the set of data points $\left(z_{1}, f\left(z_{1}\right)\right),\left(z_{2}, f\left(z_{2}\right)\right), \ldots,\left(z_{n}, f\left(z_{n}\right)\right)$. Plot Q_{n} and f on the same graph.
d) Based on the graphs, is one way of sampling significantly better than the other? Give a rough explanation for your observation?
e) Repeat parts $a-d$ for the objective function $f(x)=\cos (x)$.

Solution

a) Some Matlab code:

```
n = 11;
xpts = linspace(-1,1,n);
zpts = 1:1:n;
zpts = cos((2.*zpts-1)./(2*n)*pi);
yxpts = objective(xpts);
yzpts = objective(zpts);
scatter(xpts, yxpts, 'filled', 'r')
grid on
hold on
scatter(zpts, yzpts, 'filled', 'g')
legend('Uniform','Cosine')
hold off
function out = objective(in)
    out = 1./(1+10.*(in).^2);
end
```


b) Some Matlab code:

```
% Read in our data
n = 11;
xpts = linspace(-1,1,n);
tpts = linspace(-1,1,500);
yxpts = objective(xpts);
ytpts = objective(tpts);
syms interP
interP = make_interpolating_polynomial(xpts, yxpts);
fplot(interP, [-1,1])
grid on
hold on
plot(tpts, ytpts)
scatter(xpts, yxpts, 'filled', 'r')
title('Interpolating polynomial')
hold off
% This function is recovered from HW6#5. Lagrange's method is also
% acceptable for this problem, using the starter code on the course
    website
function poly = make_interpolating_polynomial(xpts, ypts)
        data_length = length(xpts);
```

```
    % Find div-dif coefficients
    coef_array = divdif(xpts, ypts);
    coef = coef_array(1,:);
    % Find the basis polynomials
    basis = ones(1,data_length, 'sym'); % To store our basis polynomials
    syms t % Our symbolic variable
    for basis_index = 2:length(basis) % Loop over each basis
        for x_index = 1:basis_index-1 % Loop over the first basis_index
            data points we want
            basis(basis_index) = basis(basis_index) * (t - xpts(x_index));
        end
    end
    % Construct the interpolating polynomial
    P = basis*coef';
    poly = simplify(P);
end
%We built a recusive helper function that will make short work of the
    Newton's
%Divided Differences coefficients.
function coef_array = divdif(Xpts,Ypts)
    % Xpts and Ypts are data vectors of the same length
    % Xpts = [x1, x2, x3, ... xN]
    % Ypts = [y1, y2, y3, ... yN]
    datalength = length(Xpts);
    coef_array = zeros(datalength);
    coef_array(:,1) = Ypts'; % Write the data values to the first column
    for col = 2:datalength
        for row = 1 : (datalength - col + 1)
            %and now our magic step
            coef_array(row, col) = (coef_array(row+1, col-1) - coef_array(
                row, col - 1) )/(Xpts(row + col -1) - Xpts(row));
        end
    end
end
function out = objective(in)
    out = 1./(1+10.*(in).^2);
end
```


c) Some Matlab code:

```
% Read in our data
n = 11;
zpts = 1:1:n;
zpts = cos((2.*zpts-1)./(2*n)*pi);
tpts = linspace(-1,1,500);
ytpts = objective(tpts);
yzpts = objective(zpts);
syms interQ
interQ = make_interpolating_polynomial(zpts, yzpts);
fplot(interQ, [-1,1])
grid on
hold on
plot(tpts, ytpts)
scatter(zpts, yzpts, 'filled', 'g')
title('Interpolating polynomial')
hold off
% This function is recovered from HW6#5. Lagrange's method is also
% acceptable for this problem, using the starter code on the course
```

```
    website
function poly = make_interpolating_polynomial(xpts, ypts)
    data_length = length(xpts);
    % Find div-dif coefficients
    coef_array = divdif(xpts, ypts);
    coef = coef_array(1,:);
    % Find the basis polynomials
    basis = ones(1,data_length, 'sym'); % To store our basis polynomials
    syms t % Our symbolic variable
    for basis_index = 2:length(basis) % Loop over each basis
            for x_index = 1:basis_index-1 % Loop over the first basis_index
                data points we want
                    basis(basis_index) = basis(basis_index) * (t - xpts(x_index));
        end
    end
    % Construct the interpolating polynomial
    P = basis*coef';
    poly = simplify(P);
end
%We built a recusive helper function that will make short work of the
    Newton's
%Divided Differences coefficients.
function coef_array = divdif(Xpts,Ypts)
    % Xpts and Ypts are data vectors of the same length
    % Xpts = [x1, x2, x3, ... xN]
    % Ypts = [y1, y2, y3, ... yN]
    datalength = length(Xpts);
    coef_array = zeros(datalength);
    coef_array(:,1) = Ypts'; % Write the data values to the first column
    for col = 2:datalength
        for row = 1 : (datalength - col + 1)
            %and now our magic step
                coef_array(row, col) = (coef_array(row+1, col-1) - coef_array(
                    row, col - 1) )/(Xpts(row + col -1) - Xpts(row));
        end
    end
end
function out = objective(in)
    out = 1./(1+10.*(in).^2);
end
```

Interpolating polynomial

d) The points z_{k} produces a significantly better interpolation polynomial than the evenly spaced $x_{k} . P_{n}$ gives a slightly better approximation f than Q_{n} near the center of the interval, but the error near the ends of the interval of P_{n} is worse than Q_{n}. The reason is two-fold. First, the points z_{k} are more crowded near the endpoints and sparser near the middle. Contrary to the uniform sample x_{k}, the z_{k} 's near the endpoints are "closer" to the rest of $z_{1}, \ldots z_{n}$. Thus, when x is close to -1 or 1 , the product $\left|x-z_{1}\right| \ldots\left|x-z_{n}\right|$ is smaller than $\left|x-x_{1}\right| \ldots\left|x-x_{n}\right|$. Secondly, as shown in class, the n 'th derivative of $1 /\left(x^{2}+1\right)$ grows rapidly with respect to n. In fact, one can show that it grows at order $(1 / r)^{n} n$! (where r is the distant from x to the closer endpoint) although the proof is more involved. Thus, the product

$$
\begin{equation*}
\left|x-x_{1}\right| \ldots\left|x-x_{n}\right| \frac{1}{n!} \max _{[-1,1]}\left|\frac{d^{n}}{d t^{n}}\left(\frac{1}{1+t^{2}}\right)\right| \sim h^{n}(n-1)!\frac{1}{n!} \frac{n!}{r^{n}} \sim \frac{h^{n}}{r^{n}}(n-1)!\sim\left(\frac{2 / r}{n}\right)^{n}(n-1)! \tag{1}
\end{equation*}
$$

is large when x is near ± 1. It in fact goes to infinity as $n \rightarrow \infty$ if $r<2 / e$.
e) We change the objective function to $f(x)=\cos (x)$. The code is repeated for completeness.

Repeat of part a) Some Matlab code:

```
n = 11;
xpts = linspace(-1,1,n);
zpts = 1:1:n;
zpts = cos((2.*zpts-1)./(2*n)*pi);
```

```
yxpts = objective(xpts);
yzpts = objective(zpts);
scatter(xpts, yxpts, 'filled', 'r')
grid on
hold on
scatter(zpts, yzpts, 'filled', 'g')
legend('Uniform','Cosine')
hold off
function out = objective(in)
    out = cos(in);
end
```


Repeat of part b) Some Matlab code:

```
% Read in our data
n = 11;
xpts = linspace(-1,1,n);
tpts = linspace(-1,1,500);
yxpts = objective(xpts);
ytpts = objective(tpts);
syms interP
```

```
interP = make_interpolating_polynomial(xpts, yxpts);
fplot(interP, [-1,1])
grid on
hold on
plot(tpts, ytpts)
scatter(xpts, yxpts, 'filled', 'r')
title('Interpolating polynomial')
hold off
% This function is recovered from HW6#5. Lagrange's method is also
% acceptable for this problem, using the starter code on the course
    website
function poly = make_interpolating_polynomial(xpts, ypts)
    data_length = length(xpts);
    % Find div-dif coefficients
    coef_array = divdif(xpts, ypts);
    coef = coef_array(1,:);
    % Find the basis polynomials
    basis = ones(1,data_length, 'sym'); % To store our basis polynomials
    syms t % Our symbolic variable
    for basis_index = 2:length(basis) % Loop over each basis
        for x_index = 1:basis_index-1 % Loop over the first basis_index
                data points we want
                basis(basis_index) = basis(basis_index) * (t - xpts(x_index));
        end
    end
    % Construct the interpolating polynomial
    P = basis*coef';
    poly = simplify(P);
end
%We built a recusive helper function that will make short work of the
    Newton's
%Divided Differences coefficients.
function coef_array = divdif(Xpts,Ypts)
    % Xpts and Ypts are data vectors of the same length
    % Xpts = [x1, x2, x3, ... xN]
    % Ypts = [y1, y2, y3, ... yN]
    datalength = length(Xpts);
    coef_array = zeros(datalength);
    coef_array(:,1) = Ypts'; % Write the data values to the first column
    for col = 2:datalength
        for row = 1 : (datalength - col + 1)
            %and now our magic step
            coef_array(row, col) = (coef_array(row+1, col-1) - coef_array(
                        row, col - 1) )/(Xpts(row + col -1) - Xpts(row));
        end
    end
end
```

```
function out = objective(in)
    out = cos(in);
end
```

Interpolating polynomial

Repeat of part c) Some Matlab code:

```
% Read in our data
n = 11;
zpts = 1:1:n;
zpts = cos((2.*zpts-1)./(2*n)*pi);
tpts = linspace(-1,1,500);
ytpts = objective(tpts);
yzpts = objective(zpts);
syms interQ
interQ = make_interpolating_polynomial(zpts, yzpts);
fplot(interQ, [-1,1])
grid on
hold on
plot(tpts, ytpts)
scatter(zpts, yzpts, 'filled', 'g')
title('Interpolating polynomial')
```

```
hold off
% This function is recovered from HW6#5. Lagrange's method is also
% acceptable for this problem, using the starter code on the course
    website
function poly = make_interpolating_polynomial(xpts, ypts)
    data_length = length(xpts);
    % Find div-dif coefficients
    coef_array = divdif(xpts, ypts);
    coef = coef_array(1,:);
    % Find the basis polynomials
    basis = ones(1,data_length, 'sym'); % To store our basis polynomials
    syms t % Our symbolic variable
    for basis_index = 2:length(basis) % Loop over each basis
            for x_index = 1:basis_index-1 % Loop over the first basis_index
                data points we want
                    basis(basis_index) = basis(basis_index) * (t - xpts(x_index));
            end
    end
    % Construct the interpolating polynomial
    P = basis*coef';
    poly = simplify(P);
end
%We built a recusive helper function that will make short work of the
    Newton's
%Divided Differences coefficients.
function coef_array = divdif(Xpts,Ypts)
    % Xpts and Ypts are data vectors of the same length
    % Xpts = [x1, x2, x3, ... xN]
    % Ypts = [y1, y2, y3, ... yN]
    datalength = length(Xpts);
    coef_array = zeros(datalength);
    coef_array(:,1) = Ypts'; % Write the data values to the first column
    for col = 2:datalength
        for row = 1 : (datalength - col + 1)
            %and now our magic step
            coef_array(row, col) = (coef_array(row+1, col-1) - coef_array(
                row, col - 1) )/(Xpts(row + col -1) - Xpts(row));
        end
    end
end
function out = objective(in)
    out = cos(in);
end
```

Interpolating polynomial

We see that either polynomial is particularly better or worse than the other. This is because the higher derivatives of $\cos x$ remain bounded in $[-1,1]$. This is not the case for $1 /\left(x^{2}+1\right)$. As shown in class, the n 'th derivative of $1 /\left(x^{2}+1\right)$ grows rapidly with respect to n. In fact, one can show that it grows at order $n!$. As explained earlier, it is true the non-uniform sampling z_{k} gives a smaller product $\left|x-z_{1}\right| \ldots\left|x-z_{n}\right|$. However, the fact that higher derivatives of $\cos x$ don't grow in n keeps the product on LHS of (1) small, regardless of the choice of sampling method.

Problem 2.

Interpolation gives an alternative method to approximate a function f by polynomials (other than a Taylor's theorem approximation). In this exercise, we investigate error estimates of this method. Let

$$
f(x)=e^{\frac{x}{2}} \sin \left(\frac{x}{2}\right)
$$

For evenly spaced points $0=x_{1}<x_{2}<\ldots<x_{n}=4$, let P_{n} be the corresponding interpolation polynomial.
a) Show that $\left|f^{\prime}(x)\right| \leq e^{\frac{x}{2}}$ and that $\left|f^{\prime \prime}(x)\right| \leq e^{\frac{x}{2}}$ for all x.
b) It is known that (you don't have to verify) $\left|f^{(k)}\right| \leq e^{\frac{x}{2}}$ for any $x \in \mathbb{R}$ and $k \geq 1$. Find n such that

$$
\left|f(x)-P_{n}(x)\right| \leq 10^{-4} \quad \forall x \in[0,4]
$$

(\forall mean "for all".)
c) Find n such that the integral $\int_{0}^{4} P_{n}(x) \mathrm{d} x$ approximates $\int_{0}^{4} f(x) \mathrm{d} x$ with an error not exceeding 10^{-3}.

Solution

a) We will use the fact that $|\sin (x)| \leq 1$ and $|\cos (x)| \leq 1$ for all $x \in \mathbb{R}$.

$$
f^{\prime}(x)=\frac{1}{2} e^{\frac{x}{2}} \sin \left(\frac{x}{2}\right)-\frac{1}{2} e^{\frac{x}{2}} \cos \left(\frac{x}{2}\right)=\frac{1}{2} e^{\frac{x}{2}}\left(\sin \left(\frac{x}{2}\right)-\cos \left(\frac{x}{2}\right)\right)
$$

Then we apply the triangle inequality to obtain

$$
\left|\left(\sin \left(\frac{x}{2}\right)-\cos \left(\frac{x}{2}\right)\right)\right| \leq\left|\sin \left(\frac{x}{2}\right)\right|+\left|\cos \left(\frac{x}{2}\right)\right| \leq 1+1
$$

So

$$
\left|f^{\prime}(x)\right|=\left|\frac{1}{2} e^{\frac{x}{2}}\left(\sin \left(\frac{x}{2}\right)-\cos \left(\frac{x}{2}\right)\right)\right| \leq \frac{1}{2} e^{\frac{x}{2}}|1+1|=e^{\frac{x}{2}}
$$

Now for $f^{\prime \prime}$.

$$
f^{\prime \prime}(x)=\frac{1}{4}\left(\cos \left(\frac{x}{2}\right)+\sin \left(\frac{x}{2}\right)-\sin \left(\frac{x}{2}\right)+\cos \left(\frac{x}{2}\right)\right)=\frac{1}{4} e^{\frac{x}{2}}\left(2 \cos \left(\frac{x}{2}\right)\right) \leq \frac{1}{4} e^{\frac{x}{2}}(|1|+|2|+|1|)=e^{\frac{x}{2}}
$$

(Hint for the general case: construct an induction proof that $f^{(n)}$ is a binomial of functions where $p=\sin$ and $q=\cos$.)
b) We can write an error bound for an interpolation polynomial as

$$
\left|f(x)-P_{n}(x)\right| \leq \frac{e^{\frac{4}{2}}}{n!} \prod_{j=1}^{n}\left(x-x_{j}\right) \leq \frac{e^{2}}{n!}(n-1)!\left(\frac{4}{n-1}\right)^{n}=\frac{e^{2}}{n}\left(\frac{4}{n-1}\right)^{n}
$$

With a calculator we can find that $n=11$ is the smallest n which satisfies the bound on $[0,4]$.
c) We require the inequality

$$
\left|\int_{a}^{b} f(t)-g(t) \mathrm{d} t\right| \leq \int_{a}^{b}|f(t)-g(t)| \mathrm{d} t
$$

(You do not have to prove this inequality)
We want to find n such that

$$
\left|\int_{0}^{4} f(t) \mathrm{d} t-\int_{0}^{4} P_{n}(t) \mathrm{d} t\right|=\left|\int_{0}^{4} f(t)-P_{n}(t) \mathrm{d} t\right| \leq 10^{-3}
$$

Then

$$
\left|\int_{0}^{4} f(t)-P_{n}(t) \mathrm{d} t\right| \leq \int_{0}^{4}\left|f(t)-P_{n}(t)\right| \mathrm{d} t \leq \int_{0}^{4} \sup _{x \in[0,4]}\left|f(x)-P_{n}(x)\right| \mathrm{d} t=\sup _{x \in[0,4]}\left|f(x)-P_{n}(x)\right| \int_{0}^{4} 1 \mathrm{~d} t
$$

Then

$$
=(4-0) \sup _{x \in[0,4]}\left|f(x)-P_{n}(x)\right| \leq \frac{4 e^{2}}{n}\left(\frac{4}{n-1}\right)^{2}
$$

And we can test the right side with a calculator to find that $n=10$ is the smallest n which satisfies the desired error bound. ($n=7$ is the smallest n which gives a permissible error.)

Problem 3.

Let $f(x)=\frac{1}{1+x}$. For evenly spaced sample points $0=x_{1}<x_{2}<\ldots<x_{n}=2$, let P_{n} be the corresponding interpolation polynomial. Find n such that

$$
\left|f(x)-P_{n}(x)\right| \leq 10^{-4} \forall x \in[0,2]
$$

Solution

We can write an error bound for an interpolation polynomial as

$$
\left|f(x)-P_{n}(x)\right| \leq \frac{\left|(-1)^{n} n!\right|}{(x+1)^{n+1}} \frac{1}{n!} \prod_{j=1}^{n}\left(x-x_{j}\right)
$$

The product term here can be simplified further as x_{j} is evenly spaced.

$$
\prod_{j=1}^{n}\left(x-x_{j}\right) \leq \frac{2}{n}(n-1)!
$$

(see course lecture notes for the corresponding argument). Then

$$
\left|f(x)-P_{n}(x)\right| \leq \frac{2^{n}}{(n-1)^{n}} \frac{1}{n} \frac{n!}{(0+1)^{n}}=(n-1)!\left(\frac{2}{(n-1)}\right)^{n}
$$

We can then evaluate the right side of the equality at several different values of n to find $n=31$ is sufficient. (Partial credit will be awarded on quality of argument and accuracy of the associated result.)

