Homework 7

Due 11/25/2019

1. Given a function f on some interval, say [-1, 1], and an integer N > 1, we are interested in the question: what set of sample points $\{x_1, x_2, \ldots, x_n\}$ on [-1, 1] should we choose so that the interpolation polynomial P_n can best approximate function f? Note that the number of sample points n is fixed. We are free to choose the sample points.

To investigate this question, let us consider an example $f(x) = \frac{1}{1+10x^2}$ and n = 11. Consider two different ways of sampling:

- Evenly spaced $-1 = x_1 < x_2 < \ldots < x_n = 1$,
- Unevenly spaced $z_k = \cos\left(\frac{2k-1}{2n}\pi\right)$ for $k = 1, 2, \dots, n$.
- (a) Use the command **Plot** to sketch each set of sample points on the interval [-1, 1].
- (b) Let P_n be the interpolation polynomial corresponding to the set of data points $(x_1, f(x_1))$, $\dots, (x_n, f(x_n))$. Plot P_n and f on the same graph.
- (c) Let Q_n be the interpolation polynomial corresponding to the set of data points $(z_1, f(z_1))$, $\dots, (z_n, f(z_n))$. Plot Q_n and f on the same graph.
- (d) Based on the graphs, is one way of sampling significantly better than the other? Give a rough explanation for your observation.
- (e) The same questions in Parts (b), (c), (d) but for $f(x) = \cos x$.
- 2. Interpolation gives an alternative method to approximate a function f by polynomials (other than Taylor approximation method). In this exercise, we investigate error estimates of this method. Let

$$f(x) = e^{\frac{x}{2}} \sin\left(\frac{x}{2}\right).$$

For evenly spaced sample points $0 = x_1 < x_2 < \ldots < x_n = 4$, let P_n be the corresponding interpolation polynomial.

- (a) Show that $|f'(x)| \le e^{x/2}$ and $|f''(x)| \le e^{x/2}$.
- (b) It is known that (you don't have to verify) $|f^{(k)}(x)| \le e^{x/2}$ for any $x \in \mathbb{R}$ and $k \ge 1$. Find n such that

$$|f(x) - P_n(x)| \le 10^{-4} \quad \forall x \in [0, 4].$$

(c) Find n such that the integral $\int_0^4 P_n(x) dx$ approximates $\int_0^4 f(x) dx$ with error not exceeding 10^{-3} .

Hint: use the inequality

$$\left| \int_{a}^{b} \left(f(x) - g(x) \right) dx \right| \le \int_{a}^{b} |f(x) - g(x)| dx$$

3. Let $f(x) = \frac{1}{x+1}$. For evenly spaced sample points $0 = x_1 < x_2 < \ldots < x_n = 2$, let P_n be the corresponding interpolation polynomial. Find n such that

$$|f(x) - P_n(x)| \le 10^{-4} \quad \forall x \in [0, 2].$$