Homework 7

Due 11/25/2019

1. Given a function f on some interval, say $[-1,1]$, and an integer $N>1$, we are interested in the question: what set of sample points $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ on $[-1,1]$ should we choose so that the interpolation polynomial P_{n} can best approximate function f ? Note that the number of sample points n is fixed. We are free to choose the sample points.

To investigate this question, let us consider an example $f(x)=\frac{1}{1+10 x^{2}}$ and $n=11$. Consider two different ways of sampling:

- Evenly spaced $-1=x_{1}<x_{2}<\ldots<x_{n}=1$,
- Unevenly spaced $z_{k}=\cos \left(\frac{2 k-1}{2 n} \pi\right)$ for $k=1,2, \ldots, n$.
(a) Use the command Plot to sketch each set of sample points on the interval $[-1,1]$.
(b) Let P_{n} be the interpolation polynomial corresponding to the set of data points $\left(x_{1}, f\left(x_{1}\right)\right)$, $\ldots,\left(x_{n}, f\left(x_{n}\right)\right)$. Plot P_{n} and f on the same graph.
(c) Let Q_{n} be the interpolation polynomial corresponding to the set of data points $\left(z_{1}, f\left(z_{1}\right)\right)$, $\ldots,\left(z_{n}, f\left(z_{n}\right)\right)$. Plot Q_{n} and f on the same graph.
(d) Based on the graphs, is one way of sampling significantly better than the other? Give a rough explanation for your observation.
(e) The same questions in Parts (b), (c), (d) but for $f(x)=\cos x$.

2. Interpolation gives an alternative method to approximate a function f by polynomials (other than Taylor approximation method). In this exercise, we investigate error estimates of this method. Let

$$
f(x)=e^{\frac{x}{2}} \sin \left(\frac{x}{2}\right) .
$$

For evenly spaced sample points $0=x_{1}<x_{2}<\ldots<x_{n}=4$, let P_{n} be the corresponding interpolation polynomial.
(a) Show that $\left|f^{\prime}(x)\right| \leq e^{x / 2}$ and $\left|f^{\prime \prime}(x)\right| \leq e^{x / 2}$.
(b) It is known that (you don't have to verify) $\left|f^{(k)}(x)\right| \leq e^{x / 2}$ for any $x \in \mathbb{R}$ and $k \geq 1$. Find n such that

$$
\left|f(x)-P_{n}(x)\right| \leq 10^{-4} \quad \forall x \in[0,4] .
$$

(c) Find n such that the integral $\int_{0}^{4} P_{n}(x) d x$ approximates $\int_{0}^{4} f(x) d x$ with error not exceeding 10^{-3}.
Hint: use the inequality

$$
\left|\int_{a}^{b}(f(x)-g(x)) d x\right| \leq \int_{a}^{b}|f(x)-g(x)| d x .
$$

3. Let $f(x)=\frac{1}{x+1}$. For evenly spaced sample points $0=x_{1}<x_{2}<\ldots<x_{n}=2$, let P_{n} be the corresponding interpolation polynomial. Find n such that

$$
\left|f(x)-P_{n}(x)\right| \leq 10^{-4} \quad \forall x \in[0,2] .
$$

