Homework 8

Due 12/04/2019

Denote $I=\int_{0}^{2} \frac{1}{4+x^{2}} d x$.

1. Find the exact value of I (for example, by finding an antiderivative of the integrand).
2. For a generic positive integer n, we take $n+1$ equally spaced sample points indexed by $x_{0}, x_{1}, \ldots, x_{n}$ on the interval $[0,2]$. Denote by $L_{n}, R_{n}, M_{n}, T_{n}$ the Riemann sums corresponding to left-point, right-point, midpoint and trapezoid rule. Use sigma notation to write a formula for each $L_{n}, R_{n}, M_{n}, T_{n}$.
3. Which of these 4 methods (rules) gives the best approximation of I when $n=4$?
4. Write Matlab codes to compute $L_{n}, R_{n}, M_{n}, T_{n}$ when $n=8,16,32,64$.
5. Denote by $e_{n}^{(L)}=\left|L_{n}-I\right|$ the error term from left-point rule. We use similar notations for $e_{n}^{(R)}, e_{n}^{(M)}, e_{n}^{(T)}$. It is known that

$$
e_{n}^{(L)}, e_{n}^{(R)} \leq \frac{K(b-a)^{2}}{2 n}, \quad e_{n}^{(M)} \leq \frac{\tilde{K}(b-a)^{3}}{24 n^{2}}, \quad e_{n}^{(T)} \leq \frac{\tilde{K}(b-a)^{3}}{12 n^{2}}
$$

where $K=\max _{[a, b]}\left|f^{\prime}(x)\right|$ and $\tilde{K}=\max _{[a, b]}\left|f^{\prime \prime}(x)\right|$. Find n such that the left-point rule gives an error not exceeding $\epsilon=0.0001$. The same question for the right-point, midpoint, trapezoid rule.
Hint: you don't need to find the exact values of K and \tilde{K}. An upper bound for each would be sufficient for our need.

