MATH 351, MIDTERM EXAM, FALL 2019

Name	Student ID

- Write your solution to each problem in a readable manner. Circle your final results.
- Show all your work. Answers not supported by valid arguments will get little or no credit.
- Doing correctly Problems 1,2,3,4,5,6 will result in 100% credit of the exam. You can earn extra credit by doing Problem 7.

Problem	Possible points	Earned points
1	10	
2	10	
3	10	
4	10	
5	10	
6	5	
7	5	
Total	60	

Some formula:

$$n \ge \log_2\left(\frac{b-a}{\epsilon}\right) - 1,$$
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)},$$
$$x_{n+1} = x_n - f(x_n)\frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})},$$
$$|x_{n+1} - \alpha| \le C|x_n - \alpha|^p.$$

[This page is intentionally left blank]

• If $1 \le E \le 14$ then

$$\sigma = \begin{cases} 1 & \text{if } x \ge 0, \\ -1 & \text{if } x < 0, \end{cases}$$
$$e = E - 7,$$
$$\bar{x} = (1.a_1 a_2 a_3)_2 \text{ (rounding to truncate)}$$

• If E = 0 then e = -6 and $\bar{x} = (0.a_1a_2a_3)_2$ (rounding to truncate).

• If E = 15 then the bit sequence represents $\pm \infty$ (depending on the sign σ).

Problem 1. (10 points) Represent the number 2.2 in this floating-point system.

First, we convert 2.2 from decimal system to binary system.

$$2 \cdot 2 = 2 + 0 \cdot 2$$

 $2 = (10)_2$

Thus, 2.2 - (10. 0011 00110011....)2.

We have

2.2 =
$$(1.000110011...)_2 \times 2^1$$
 (shifting the floating point)
~ $(1.001)_2 \times 2^1$ (rounding)

* Compute x+y:

$$x = (0.110)_{2} \times 2^{3}$$

 $y = (1.010)_{2} \times 2^{2}$
Samming the mantrissa:
 0.1101
 $+1.0100$
 10.0001
Then x+y = $(10.0001)_{2} \times 2^{3}$
 $= (1.00001)_{2} \times 2^{4}$
 $x+y \approx (1.000)_{2} \times 2^{4}$

* Compute scy:
Multiplying the mantisse:

$$1.101$$

 $\frac{x}{1.010}$
 1.01
 0.000
 1.01
 1.01
 1.01
 1.01
 1.01
 1.01
 1.01
 1.0000010
Thus, $xy = (10.000010)_2 \times 2^{2+3}$
 $= (1.0000)_2 \times 2^{6}$

Problem 3. (10 points) Let $f(x) = x^3 + 3x - 1$.

- (a) Use bisection method (by performing 4 iterations) to find a approximate root of f on the interval (0,1).
- (b) How many iterations are needed to obtain an approximate root with error at most $\epsilon = 10^{-6}$?

•	$a_o \equiv 0$,	$b_{v} = l$,	$C_{0} = 0.5$	
\sim	$\int (a_{b}) \equiv -l < 0$	(b) = 3>0	$f(c_0) = 0.625 > 0$	
-	c_{v} b_{v}			
$a_1 = a_0$, $b_1 = c_0 = 0.5$, $c_1 = \frac{1}{2}(a_1 + b_1) = \frac{1}{2}(0 + 0.5) = 0.25$				
		f(u) = -	-6.234375 < 0	
٩	$c_1 b_1$			
~~~ ~~ ~~	$c_2 = c_1 , b_2 = b$	$1 , c_2 = \frac{1}{2} (a_2 + b_1)$	$(v_{\nu}) = \frac{1}{2}(0.25 + 0.5) = 0.375^{-1}$	
۲ مر –	$\begin{array}{c} c_{1} & b_{2} \\ c_{2} & b_{3} \\ + & + \end{array}$	$f(c_{v}) = 0.17$	-7 >0	
~~) A.	$_{3} = a_{2}, b_{3} =$	$c_{2}$ , $c_{3} = \frac{1}{2} (a_{3} + a_{3})$	$(b_{3}) = \frac{1}{2} (0.25 + 0.875) = 6.8125$	
۲ مئ س	$c_3$ $b_3$ - +	$f(c_3) = -0.03$	0 0	
~) Q	$t = c_3$ , $b_4 = b_3$	$_{1}$ $C_{4} = \frac{1}{2} (a_{4} + b_{2})$	$(a) = \frac{1}{2}(0.3125 + 0.375) = 0.34375.$	
	Therefore, the	real root is about	t 0.34375.	
To ge	t an error a	t most $\varepsilon = 10^{-1}$	6, we need	
		$n \geq \log_2\left(\frac{b-a}{s}\right)$	$(-1) = \log_2\left(\frac{1-\nu}{10^{-6}}\right) - 1 \approx 18.93$	
Th	us, h7, 19.			

**Problem 4.** (10 points) Let f be the function given in Problem 3.

- (a) Write the iteration formula of Newton's method.
- (b) With  $x_0 = 1$ , use Newton's method to find the approximate root after 4 iterations.

$$f(x) = x^{3} + 3x - 1$$

$$f'(x) = 3x^{2} + 3$$

$$The ration formula: x_{n+1} = x_{n} - \frac{x^{3}_{n} + 3x_{n} - 1}{3x^{2}_{n} + 3}$$

$$= \frac{3x^{3}_{n} + 3x_{n} - (x^{3}_{n} + 3x_{n} - 1)}{3x^{2}_{n} + 3} = \frac{2x^{3}_{n} + 1}{3x^{2}_{n} + 3}$$

$$\frac{n}{2} \frac{x_{n}}{1}$$

$$\frac{n}{3} \frac{x_{n}}{6} = 0.5$$

$$\frac{2}{3} \frac{0.333...}{1} (=\frac{1}{3})$$

$$\frac{3}{3} \frac{29}{50}$$

$$\frac{1}{6} \frac{32218...}{1}$$

**Problem 5.** (10 points) Consider the function  $g(x) = 3x - x^2$ .

- (a) Solve for all fixed points of g.
- (b) Write the iteration formula for the fixed point method for function g.
- (c) With  $x_0 = 1.8$ , find  $x_5$ .

Set 
$$x = g(x)$$
. Then  $x = 3x - x^2$ , which is equivities  $2x - x^2 = 0$ .  
This equation has two solutions:  $x = 0$  and  $x = 2$ . These are two  
pixed points of  $g$ .  
Iteration formule:  $x_{n+1} = g(x_n) = 3x_n - x_n^2$ .  

$$\frac{n}{0} \frac{x_n}{1 \cdot g}$$

$$\frac{1}{2 \cdot 16}$$

$$\frac{1 \cdot g}{2 \cdot 15 \cdot 15 \cdot 1.5}$$

$$\frac{1 \cdot 8 \cdot 144}{3 \cdot 2 \cdot 15 \cdot 15 \cdot 1.5}$$

$$\frac{1 \cdot 8 \cdot 2600 - 1.5}{5 \cdot 2 \cdot 143 \cdot 12 \cdot 1.5}$$

**Problem 6.** (5 points) Draw a cobweb diagram that illustrates the fixed point method in Problem 5, Part (c).



**Problem 7.** (5 points) Given that the sequence  $x_n$  in Problem 5 converges to 2 as  $n \to \infty$ , find the order of convergence.

$$\begin{split} \chi_{n+1} &= 3\chi_n - \chi_n^2 \\ \text{Subtract 2 from both sides:} \\ \chi_{n+1} - 2 = 3\chi_n - \chi_n^2 - 2 = -(\chi_n - 2)(\chi_n - 1) \\ &\approx -(\chi_n - 2)(\chi_n - 1) \\ &\approx -(\chi_n - 2)(\chi_n - 1) \\ &= -(\chi_n - 2) \\ \text{Thus, } |\chi_{n+1} - 2| \lesssim |\chi_n - 2|. \\ \text{The order of convergence is therefore } p = 1. \end{split}$$