MATH 351, MIDTERM EXAM, FALL 2019

Name	Student ID

- Write your solution to each problem in a readable manner. Circle your final results.
- Show all your work. Answers not supported by valid arguments will get little or no credit.
- Doing correctly Problems $1,2,3,4,5,6$ will result in 100% credit of the exam. You can earn extra credit by doing Problem 7.

Problem	Possible points	Earned points
1	10	
2	10	
3	10	
4	10	
5	10	
6	5	
7	5	
Total	60	

Some formula:

$$
\begin{gathered}
n \geq \log _{2}\left(\frac{b-a}{\epsilon}\right)-1, \\
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \\
x_{n+1}=x_{n}-f\left(x_{n}\right) \frac{x_{n}-x_{n-1}}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}, \\
\left|x_{n+1}-\alpha\right| \leq C\left|x_{n}-\alpha\right|^{p} .
\end{gathered}
$$

[This page is intentionally left blank]

Consider a binary floating-point system described as follows. A number x is represented approximately as $x \approx \sigma \cdot \bar{x} \cdot 2^{e}$ where

- If $1 \leq E \leq 14$ then

$$
\begin{aligned}
\sigma & =\left\{\begin{array}{lll}
1 & \text { if } & x \geq 0 \\
-1 & \text { if } & x<0
\end{array}\right. \\
e & =E-7, \\
\bar{x} & =\left(1 \cdot a_{1} a_{2} a_{3}\right)_{2} \text { (rounding to truncate) }
\end{aligned}
$$

- If $E=0$ then $e=-6$ and $\bar{x}=\left(0 . a_{1} a_{2} a_{3}\right)_{2}$ (rounding to truncate).
- If $E=15$ then the bit sequence represents $\pm \infty$ (depending on the sign σ).

Problem 1. (10 points) Represent the number 2.2 in this floating-point system.

First, we convert 2.2 from decimal system to binary system.

$$
\left.\begin{array}{c}
2.2=2+0.2 \\
2=(10)_{2} \\
0.2 \times 2=0.4 \rightarrow 0 \\
0.4 \times 2=0.8 \rightarrow 0 \\
0.8 \times 2=1.6 \rightarrow 1 \\
0.6 \times 2=1.2 \rightarrow 1 \\
0.2 \times 2=0.4 \rightarrow 0
\end{array}\right\}
$$

Thus, $2.2=(10.001100110011 \cdots)_{2}$.
We have

$$
\begin{aligned}
2.2 & =(1.000110011 \ldots)_{2} \times 2^{1} \quad \text { (shifting the floating point) } \\
& \approx(1.001)_{2} \times 2^{1} \quad \text { (rounding) }
\end{aligned}
$$

Problem 2. (10 points) Let $x=(1.101)_{2} \times 2^{2}$ and $y=(1.010)_{2} \times 2^{3}$. Perform the operations $x+y$ and $x \cdot y$ in the floating-point system given on the previous page.

* Compute $x+y$:

$$
\begin{aligned}
& x=(0.1101)_{2} \times 2^{3} \\
& y=(1.010)_{2} \times 2^{3}
\end{aligned}
$$

Summing the mantissa:

$$
\begin{array}{r}
0.1101 \\
+1.0100 \\
\hline 10.0001
\end{array}
$$

Then $x+y=(10.0001)_{2} \times 2^{3}$

$$
\begin{aligned}
& =(1.00001)_{2} \times 2^{4} \\
x+y & \left.\approx(1.000)_{2} \times 2^{4}\right)
\end{aligned}
$$

* Compute x :

Multiplying the mantissa:

1.101
$\times \quad 1.010$
0 00 0 1 1 0 0 0 0 1 \vdots \vdots 1 0 \vdots 10.0 0 0

Thus, $x y=(10.000010)_{2} \times 2^{2+3}$

$$
\begin{aligned}
& =(1.000001)_{2} \times 2^{6} \\
x y & \simeq(1.000)_{2} \times 2^{6}
\end{aligned}
$$

Problem 3. (10 points) Let $f(x)=x^{3}+3 x-1$.
(a) Use bisection method (by performing 4 iterations) to find a approximate root of f on the interval $(0,1)$.
(b) How many iterations are needed to obtain an approximate root with error at most $\epsilon=10^{-6}$?

$$
\begin{aligned}
& a_{0}=0, \quad b_{0}=1, \\
& c_{0}=0.5 \\
& \leadsto \quad f\left(a_{0}\right)=-1<0 \quad f\left(b_{0}\right)=3>0 \quad f\left(c_{0}\right)=0.625>0 \\
& a_{0} \xlongequal{+} c_{0} b_{0} \\
& \leadsto a_{1}=a_{0}, \quad b_{1}=c_{0}=0.5, \quad c_{1}=\frac{1}{2}\left(a_{1}+b\right)=\frac{1}{2}(0+0.5)=0.25 \\
& f(u)=-0.234375<0 \\
& \leadsto a_{2}=c_{1}, b_{2}=b_{1}, \quad c_{2}=\frac{1}{2}\left(a_{2}+b_{2}\right)=\frac{1}{2}(0.25+0.5)=0.375 \\
& \rightarrow a_{3}=a_{2}, b_{3}=c_{2}, c_{3}=\frac{1}{2}\left(a_{3}+b_{3}\right)=\frac{1}{2}(0.25+0.375)=0.3125 \\
& \rightarrow a_{4}=c_{3}, b_{4}=b_{3}, \quad c_{4}=\frac{1}{2}\left(a_{4}+b_{4}\right)=\frac{1}{2}(0.3125+0.375)=0.34375 .
\end{aligned}
$$

Therefore, the real root is about 0.34375 .
To get an error at most $\varepsilon=10^{-6}$, we need

$$
n \geqslant \log _{2}\left(\frac{b_{0}-a_{0}}{\varepsilon}\right)-1=\log _{2}\left(\frac{1-0}{10^{-6}}\right)-1 \approx 18.93 \ldots
$$

Problem 4. (10 points) Let f be the function given in Problem 3.
(a) Write the iteration formula of Newton's method.
(b) With $x_{0}=1$, use Newton's method to find the approximate root after 4 iterations.

$$
\begin{aligned}
f(x) & =x^{3}+3 x-1 \\
f^{\prime}(x) & =3 x^{2}+3 \\
\text { It ration formula: } \quad x_{n+1} & =x_{n}-\frac{x_{n}^{3}+3 x_{n}-1}{3 x_{n}^{2}+3} \\
& =\frac{3 x_{n}^{3}+3 x_{n}-\left(x_{n}^{3}+3 x_{n}-1\right)}{3 x_{n}^{2}+3}=\frac{2 x_{n}^{3}+1}{3 x_{n}^{2}+3}
\end{aligned}
$$

n	x_{n}
0	1
1	$3 / 6=0.5$
2	$0.333 \ldots(=1 / 3)$
3	$29 / 90$
4	$0.32218 \ldots$

Problem 5. (10 points) Consider the function $g(x)=3 x-x^{2}$.
(a) Solve for all fixed points of g.
(b) Write the iteration formula for the fixed point method for function g.
(c) With $x_{0}=1.8$, find x_{5}.

Set $x=g(x)$. Then $x=3 x-x^{2}$, which is equiv. to $2 x-x^{2}=0$. This equation has two solutions: $x=0$ and $x=2$. These are two fixed points of g.

Iteration formals:

$$
x_{n+1}=g\left(x_{n}\right)=3 x_{n}-x_{n}^{2} .
$$

n	x_{n}
0	1.8
1	2.16
2	1.8144
3	$2.15115 \ldots$
4	$1.82600 \ldots$
5	$2.14372 \ldots$

Problem 6. (5 points) Draw a cobweb diagram that illustrates the fixed point method in Problem 5, Part (c).

Problem 7. (5 points) Given that the sequence x_{n} in Problem 5 converges to 2 as $n \rightarrow \infty$, find the order of convergence.

$$
x_{n+1}=3 x_{n}-x_{n}^{2}
$$

Subtract 2 from both sides:

$$
\begin{aligned}
x_{n+1}-2=3 x_{n}-x_{n}^{2}-2 & =-\left(x_{n}-2\right)\left(x_{n}-1\right) \\
& \approx-\left(x_{n}-2\right)(2-1) \\
& =-\left(x_{n}-2\right)
\end{aligned}
$$

Thus, $\left|x_{n+1}-2\right| \approx\left|x_{n}-2\right|$.
The order of convergence is therefore $p=1$.

