Optional Assignment

Due 12/06/2019

In this problem, we want to find the empirical rate of convergence of the left-point and trapezoid rule. Let $[a, b]=[1,4]$. For $f(x)=1+2 x$, put $I=\int_{a}^{b} f(x) d x$ and $e_{n}^{(L)}=\left|L_{n}-I\right|$. Let h be the mesh size.
(a) For each $h=1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}$, find the corresponding error term $e_{n}^{(L)}$.
(b) Plot the log-log diagram. That is, the plot of 5 points with coordinate $\left(\ln h, \ln e_{n}^{(L)}\right)$.
(c) Use the command polyfit in Matlab to find the best line that fits these 5 points on the \log-log diagram.
(d) What is the empirical rate of convergence of the sequence L_{n} to I ? That is, the number α such that $e_{n}^{(L)} \sim h^{\alpha}$. Compare it to the theoretical rate of convergence.
(e) The same questions in Part (a)-(d) but with $f(x)=x^{2}-4 x+5$.

