Name: \qquad

1. Find a real root of $x^{3}-2 x-2=0$ by bisection method: start with $\left[a_{0}, b_{0}\right]=[0,2]$. Find $\left[a_{4}, b_{4}\right]$. What is an estimate of the error if one takes $x_{0}=\left(a_{4}+b_{4}\right) / 2 ?$

$$
\begin{array}{llll}
a_{0}=0, & b_{0}=2, & c_{0}=\frac{a_{0}+b_{0}}{2}=1 \\
f\left(a_{0}\right)<0, f\left(b_{0}\right)>0, & f\left(c_{0}\right)<0 & a_{0} & c_{0} \\
- & b_{0} \\
- & a_{1} & b_{1}
\end{array}
$$

Then $a_{1}=c_{0}=1, \quad b_{1}=b_{0}=2, \quad c_{1}=\frac{a_{1}+b_{1}}{2}=1.5$

$$
f\left(a_{1}\right)=f\left(c_{0}\right)<0, \quad f\left(b_{1}\right)>0, \quad f\left(c_{1}\right)<0
$$

Then $a_{2}=c_{1}=1.5, b_{2}=b_{1}=2, c_{2}=\frac{a_{2}+b_{2}}{2}=1.75$
(continue this procedure....)
2. Find a root with error tolerance $\epsilon=10^{-3}$.

$$
n \geqslant \log _{2}\left(\frac{b_{0}-a_{0}}{\varepsilon}\right)-1=\log _{2}\left(\frac{2-0}{10^{-3}}\right)-1 \approx 9.96
$$

Thus, by taking $x_{0}=\frac{a_{10}+b_{10}}{2}$, one obtains an approximate root with precision ε.

To find a_{10} and b_{10}, one continues the procedure in Problem 1 six more times.

