Name: \qquad

1. Let us compute approximately $\sqrt[3]{3}$ by Newton's method by following the procedure:

- Find a function f such that $x_{*}=\sqrt[3]{3}$ is a root.
- Write the iteration formula of Newton's method.
- Pick a point x_{0} as the initial iteration. The closer x_{0} is to x_{*} the better.
- Do four iterations. What do you get for x_{4} ?

One can choose $f(x)=x^{3}-3$.

$$
f^{\prime}(x)=3 x .
$$

The iteration formula for Newton's method is

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}^{3}-3}{3 x_{n}^{2}}=\frac{2 x_{n}}{3}+\frac{1}{x_{n}^{2}}
$$

One can tale $x_{0}=2$.

$$
\begin{aligned}
& x_{1}=\frac{2 \times 2}{3}+\frac{1}{2^{2}} \approx \ldots \\
& x_{2}=\cdots
\end{aligned}
$$

2. Find approximately the intersection point of the graph of $u(x)=e^{-x}$ and the graph of $v(x)=2 x e^{x}$.

Set $u(x)=v(x)$ and solve for x.

$$
e^{-x}=2 x e^{x}
$$

This is equivalent to

$$
1=2 x e^{2 x}
$$

Put $t=2 x$. We solve for t from $t e^{t}=1$.
Rut $f(t)=t e^{t}-1$.

$$
f^{\prime}(t)=(t+1) e^{t}
$$

Then

$$
\begin{aligned}
t_{n+1}=t_{n}-\frac{t_{n} e^{t_{n}}-1}{\left(t_{n}+1\right) e^{t_{n}}} & =t_{n}-\frac{t_{n}}{t_{n}+1}+\frac{1}{\left(t_{n}+1\right) e^{t_{n}}} \\
& =\frac{t_{n}^{2}}{t_{n}+1}+\frac{1}{\left(t_{n}+1\right) e^{t_{n}}} \\
& =\frac{1}{t_{n}+1}\left(t_{n}^{2}+e^{-t_{n}}\right)
\end{aligned}
$$

By looking at the plot of $f(t)$, one can pick $t_{0}=0$ as the initial point for the iteration.

After getting an apps. value for root t_{*}, we get an approximate root x_{*} by the relation $x_{*}=\frac{1}{2} t_{*}$. The apps. intersection point is

$$
\left(x_{*}, e^{-x_{*}}\right)
$$

