Name: _

1. Consider a sequence x_n given by $x_0 = 2$,

$$x_{n+1} = \frac{x_n}{2} + \frac{1}{2x_n}$$

Find an order of convergence of x_n to 1.

$$\chi_{h+l} = \frac{\chi_{u}}{2} + \frac{1}{2\chi_{u}} = \frac{\chi_{u}^{2} - 2\chi_{u} + 1}{2\chi_{u}} = \frac{(\chi_{u} - 1)^{2}}{2\chi_{u}} \quad (\star)$$

* Heuristic argument:

Because
$$x_n$$
 converges to 1 , $x_n \approx 1$. Then
 $x_{n+1} - 1 \approx \frac{(x_n - 1)^2}{2}$

and thus
$$|x_{n+1}-1| \lesssim \frac{|x_n-1|^2}{2}$$

* ligorous argument:

Because x_n converges to 1, $x_n > \frac{1}{2}$ for sufficiently large n.

Then (*) implies $|x_{n+1}-1| = \frac{(x_n-1)^2}{2x_n} \le \frac{|x_n-1|^2}{2\cdot \frac{1}{2}} = |x_n-1|^2$

We obtain p=2.

- 2. Suppose we want to compute approximately $\sqrt{3}$ by using Newton's method for the function $f(x) = x^2 3$.
 - Write the iteration formula of Newton's method.
 - Choose $x_0 = 1$ as the initial iteration. Draw a picture that illustrates the Newton's method. From the picture, does the sequence x_n converge?
 - Find the order of convergence of x_n to $\sqrt{3}$.

f'(x) = 2x

Iteration formula:

$$\chi_{n+1} = \chi_n - \frac{f(\chi_n)}{f(\chi_n)} = \chi_n - \frac{\chi_n - 3}{2\chi_n} = \frac{\chi_n}{2} + \frac{3}{2\chi_n}$$

Then

$$x_{n+1} - \sqrt{3} = \frac{x_n}{2} + \frac{3}{2x_n} - \sqrt{3} = \frac{x_n^2 - 2\sqrt{3}x_n + 3}{2x_n} = \frac{(x_n - \sqrt{3})^2}{2x_n}$$

Because an -> 13, xn 2 13. Then

$$n_{n+1} - \sqrt{3} \approx \frac{(n_n - \sqrt{3})^2}{2\sqrt{3}}$$

Then
$$|\mathbf{x}_{n+1} - \sqrt{3}| \leq \frac{|\mathbf{z}_n - \sqrt{3}|^2}{2\sqrt{3}}$$

Order of convergence is p=2.