Name: \qquad

1. Suppose we want to compute approximately $\sqrt{5}$ by using Newton's method for the function $f(x)=x^{2}-5$.

- Write the iteration formula of Newton's method.
- Choose $x_{0}=2$ as the initial iteration. Draw a picture that illustrates the Newton's method. From the picture, does the sequence x_{n} converge?
- Find the order of convergence of x_{n} to $\sqrt{5}$.

$$
f^{\prime}(x)=2 x
$$

Iteration formula:

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}^{2}-5}{2 x_{n}}=\frac{x_{n}^{2}+5}{2 x_{n}}
$$

Then

$$
x_{n+1}-\sqrt{5}=\frac{x_{n}^{2}+5-2 \sqrt{5} x_{n}}{2 x_{n}}
$$

We want to factor the numerator. Notice that $\sqrt{5}$ is a root of the quadratic polynomial $r^{2}+5-2 \sqrt{5} r$. Thus, $r-\sqrt{5}$ must be a factor of this polynomial. The other factor is also $r-\sqrt{5}$ because $\sqrt{5}$ is a clouble root. Therefore, $r^{2}+5-2 \sqrt{5} r=(r-\sqrt{5})^{2}$.

we obtain

$$
x_{n+1}-\sqrt{5}=\frac{\left(x_{n}-\sqrt{5}\right)^{2}}{2 x_{n}}
$$

Because $x_{n} \rightarrow \sqrt{5}, x_{n} \approx \sqrt{5}$. Then

$$
x_{n+1}-\sqrt{5} \approx \frac{\left(x_{n}-\sqrt{5}\right)^{2}}{2 \sqrt{5}}
$$

Then

$$
\left|x_{n+1}-\sqrt{5}\right| \lesssim \frac{\left|x_{n}-\sqrt{5}\right|^{2}}{2 \sqrt{5}}
$$

Order of convergence is $p=2$.

