Worksheet

10/30/2019

Name:

1. Consider a floating-point system described as follows. A number x is represented approximately as $x \approx \sigma \cdot \bar{x} \cdot 2^{e}$ where

- If $1 \leq E \leq 14$ then

$$
\begin{aligned}
\sigma & =\left\{\begin{array}{lll}
1 & \text { if } & x \geq 0 \\
-1 & \text { if } & x<0
\end{array}\right. \\
e & =E-7, \\
\bar{x} & =\left(1 . a_{1} a_{2} a_{3}\right)_{2} \quad \text { (rounding to truncate) }
\end{aligned}
$$

- If $E=0$ then $e=-6$ and $\bar{x}=\left(0 . a_{1} a_{2} a_{3}\right)_{2}$ (rounding to truncate).
- If $E=15$ then the bit sequence represents $\pm \infty$ (depending on the sign σ).
(a) Represent the number 2.8 in this format.
(b) Let $x=-(1.001)_{2} \times 2^{1}$ and $y=(1.010)_{2} \times 2^{2}$. Perform the operation $x y$ in this floatingpoint format.

2. Consider the function $f(x)=x e^{x}$.
(a) Find the degree n Taylor polynomial of f about $x_{0}=0$. Hint: use the Taylor expansion of e^{x} about 0 .
(b) Suppose we want to approximate $x e^{x}$ by the polynomial $p_{n}(x)$ found above. For what values of n can we guarantee that the error of this approximation is at most $\epsilon=10^{-6}$ for any $1 \leq x \leq 2$?
