Worksheet 10/30/2019

- 1. Consider a floating-point system described as follows. A number x is represented approximately as $x \approx \sigma \cdot \bar{x} \cdot 2^e$ where
 - If $1 \le E \le 14$ then

$$\sigma = \begin{cases} 1 & \text{if } x \ge 0, \\ -1 & \text{if } x < 0, \end{cases}$$
$$e = E - 7, \\ \bar{x} = (1.a_1 a_2 a_3)_2 \quad \text{(rounding to truncate)}$$

- If E = 0 then e = -6 and $\bar{x} = (0.a_1a_2a_3)_2$ (rounding to truncate).
- If E = 15 then the bit sequence represents $\pm \infty$ (depending on the sign σ).
- (a) Represent the number 2.8 in this format.

(b) Let $x = -(1.001)_2 \times 2^1$ and $y = (1.010)_2 \times 2^2$. Perform the operation xy in this floating-point format.

- 2. Consider the function $f(x) = xe^x$.
 - (a) Find the degree n Taylor polynomial of f about $x_0 = 0$. Hint: use the Taylor expansion of e^x about 0.

(b) Suppose we want to approximate xe^x by the polynomial $p_n(x)$ found above. For what values of n can we guarantee that the error of this approximation is at most $\epsilon = 10^{-6}$ for any $1 \le x \le 2$?