Worksheet

10/7/2019
Name: \qquad
Below is a toy model of IEEE double-precision floating-point format to demonstrate how machine arithmetic is done.
A number is represented by a sequence of 8 bits:

This sequence represents the number $x=\sigma \cdot \bar{x} \cdot 2^{e}$ where

- If $1 \leq E \leq 14$ then

$$
\begin{aligned}
\sigma & =\left\{\begin{array}{lll}
1 & \text { if } & c_{0}=0 \\
-1 & \text { if } & c_{0}=1,
\end{array}\right. \\
e & =E-7, \\
\bar{x} & =\left(1 . a_{1} a_{2} a_{3}\right)_{2}
\end{aligned}
$$

- If $E=0$ then $e=-6$ and $\bar{x}=\left(0 . a_{1} a_{2} a_{3}\right)_{2}$.
- If $E=15$ then the bit sequence represents $\pm \infty$ (depending on the sign σ).
(a) Convert the number 28.375 from decimal system to binary system (exact form).

$28.375=28+0.375$	28	0	$0.375 \times 2=0.75 \rightarrow 0$
$28=(11100)_{2}$	14	0	$6.75 \times 2=1.5 \rightarrow 1 \downarrow$
$0.375=(0.0110)_{2}$	3	$1 \uparrow$	$0.5 \times 2=1 \rightarrow 1$
$28.375=(11100.011)_{2}$	1	1	$0 \times 2=0 \rightarrow 0$

(b) What is the (approximate) representation of 28.375 in this format?

$$
(11100.01)_{2}=(1.1100011)_{2} \times 2^{4} \underset{\substack{\text { rounding }}}{\left.(1.110)_{2} \times 2^{4}\right)}
$$

(c) Perform the below floating-point multiplication by following the procedure:

1. Add two exponents.
2. Multiply the significands.
3. Normalize the result by shifting the floating point.
4. Round the significand.

$$
\begin{aligned}
& \underbrace{(1.101)_{2} \times 2^{-3}}_{x} \times \underbrace{(1.111)_{2} \times 2^{2}}_{y} \\
& \quad \text { Note that } M=7 \text { and } m=-6
\end{aligned}
$$

1) Add exponents:

$$
2^{-3} \times 2^{2}=2^{-1}
$$

-1 is between m and M.
2) Multiply the significands:

$$
\begin{aligned}
& 1.101 \\
& \begin{array}{r}
\times 1.111 \\
1101
\end{array} \\
& \begin{array}{r}
1101: \\
11011 \\
1101: \\
\hline 1000
\end{array} \\
& \uparrow \uparrow \uparrow \uparrow \begin{array}{l}
1+1=(10)_{2} \\
1 .
\end{array} \text { write o, carry } 1 \text {. } \\
& 1+1+1+1=4=(100)_{2} \text {. Write } 0 \text {, carry } 10 \\
& 1+1+10=(100)_{2} \text {. Write 0, carry } 10 \\
& 1+1+10=(100 \text {) Write } 0, \text { carry } 10 \\
& 1+10=11 \text {. Write } 11
\end{aligned}
$$

3) Shift the floating point:

$$
\begin{aligned}
x y & =(11.000011)_{2} \times 2^{-1} \\
& =(1.1000011)_{2} \times 2^{0}
\end{aligned}
$$

4) Round off:

$$
x y \approx(1.100)_{2} \times 2^{0}
$$

