Worksheet
10/9/2019
Name: \qquad
Below is a toy model of IEEE double-precision floating-point format.
A number is represented by a sequence of 8 bits:

$$
\underbrace{c_{0}}_{\text {sign }} \underbrace{\begin{array}{cccc}
c_{1} & c_{2} & c_{3} & c_{4}
\end{array} \underbrace{a_{1}}_{\bar{x}} \begin{array}{l}
a_{2}
\end{array} a_{3}}_{E}
$$

This sequence represents the number $x=\sigma \cdot \bar{x} \cdot 2^{e}$ where

- If $1 \leq E \leq 14$ then

$$
\begin{aligned}
\sigma & =\left\{\begin{array}{lll}
1 & \text { if } & c_{0}=0, \\
-1 & \text { if } & c_{0}=1,
\end{array}\right. \\
e & =E-7, \\
\bar{x} & =\left(1 \cdot a_{1} a_{2} a_{3}\right)_{2}
\end{aligned}
$$

- If $E=0$ then $e=-6$ and $\bar{x}=\left(0 . a_{1} a_{2} a_{3}\right)_{2}$.
- If $E=15$ then the bit sequence represents $\pm \infty$ (depending on the sign σ).

1) Write 0 and 1 in the floating-point format described above (in form of $\sigma \cdot \bar{x} \cdot 2^{e}$).

$$
\begin{aligned}
& 0=(0.000)_{2} \times 2^{-6} \\
& 1=(1.000)_{2} \times 2^{0}
\end{aligned}
$$

2) For each given x, find the next number (smallest number greater than x) that can be represented with exactness by the above floating-point format. Find the difference between two numbers (written as power of 2).

$$
\begin{aligned}
& \text { (a) } x=(0.000)_{2} \times 2^{-6}, \quad y=(0.001)_{2} \times 2^{-6} \\
& y-x=\left[\left(0.0017_{2}-(0.000)_{2}\right] \times 2^{-6}=2^{-3} \times 2^{-6}=2^{-9}\right.
\end{aligned}
$$

(b) $x=(0.001)_{2} \times 2^{-6}, \quad y=(0.010)_{2} \times 2^{-6}$

$$
y-x=\left[(0.010)_{2}-(0.001)_{2}\right] \times 2^{-6}=(0.001)_{2} \times 2^{-6}=2^{-9}
$$

(c) $x=(1.101)_{2} \times 2^{-2}, y=(1.110)_{2} \times 2^{-2}$

$$
y-x=\left[(1.110)_{2}-(1.101)_{2}\right] \times 2^{-2}=(0.001)_{2} \times 2^{-2}=2^{-3} \times 2^{-2}=2^{-5}
$$

(d) $x=(1.010)_{2} \times 2^{6}, \quad y=(1.011)_{2} \times 2^{6}$

$$
y-x=\left[(1.011)_{2}-(1.010)_{2}\right] \times 2^{6}=(0.001)_{2} \times 2^{6}=2^{-3} \times 2^{6}=2^{3}
$$

